
Matrix Canonical Structure Toolbox

User’s manual

version 0.7

Department of Computing Science, Umeå University, Sweden

September 13, 2019

Abstract

The Matrix Canonical Structure toolbox is a Matlab toolbox for computing and repre-
senting canonical structure information. This user’s manual is a summary of the help-texts
for the functions and classes in the toolbox. The manual also includes the StratiGraph Mat-
lab interface functions, which are distributed together with the Matlab plug-in for Strati-
Graph. For further information and downloads visit
https://www.umu.se/en/stratigraph-mcs/, or contact Stefan Johansson, stefanj@cs.umu.se.

Contents

1 Introduction 4
1.1 Installation . 4
1.2 StratiGraph Connection . 5
1.3 Compatibility . 5
1.4 Contact . 5
1.5 Developers and Scientific Contributors . 5
1.6 Bibliography . 6

2 Toolbox summary 7

3 Auxiliary functions 10
3.1 MCSFORMAT . 10
3.2 MCSGETVALIDBLOCKS . 10
3.3 MCSTOLERANCE . 11
3.4 MCSEVCLMTH . 11
3.5 SEGRE2WEYR . 12
3.6 SIZES2SEGRE . 12
3.7 SIZES2WEYR . 12
3.8 WEYR2SEGRE . 13
3.9 WEYR2SIZES . 13

4 Canonical Structure Objects 14
4.1 MCSSTRUCT . 14
4.2 CMSTRUCT . 20
4.3 MPSTRUCT . 26
4.4 MSTRUCT . 33
4.5 PSTRUCT . 38
4.6 SCMSTRUCT . 45
4.7 SPSTRUCT . 51

1

2 | CONTENTS User’s manual

4.8 SSPSTRUCT . 57

4.9 SSSTRUCT . 63

5 Canonical Block Objects 73

5.1 MCSBLOCK . 73

5.2 FJBLOCK . 76

5.3 GBLOCK . 79

5.4 HBLOCK . 82

5.5 IJBLOCK . 85

5.6 KBLOCK . 87

5.7 LSBLOCK . 90

5.8 MBLOCK . 93

5.9 PBLOCK . 95

5.10RSBLOCK . 97

5.11SBLOCK . 100

5.12SGBLOCK . 101

5.13SHBLOCK . 103

5.14SKBLOCK . 106

5.15SMBLOCK . 108

5.16SWBLOCK . 111

5.17WBLOCK . 113

5.18ZJBLOCK . 115

6 Canonical Forms 119

6.1 BCF . 119

6.2 KCF . 120

6.3 CCF . 120

6.4 JCF . 121

6.5 JNF . 122

7 Guptri functions 123

7.1 PCLUSTER . 123

7.2 PGGALLERY . 124

7.3 PGUPTRI . 126

8 Tangent spaces and codimensions 129

8.1 CMCODIM . 129

8.2 CMTANSPACE . 129

8.3 MCODIM . 129

8.4 MTANSPACE . 130

8.5 PCODIM . 130

8.6 PTANSPACE . 130

8.7 S2CODIM . 131

8.8 S2TANSPACE . 131

8.9 SCMCODIM . 133

8.10SCMTANSPACE . 133

8.11SPCODIM . 134

8.12SPTANSPACE . 134

8.13SSPCODIM . 134

8.14SSPTANSPACE . 135

MCS Toolbox, v0.7 CONTENTS | 3

9 StartiGraph public interface functions 136
9.1 SGCLOSE . 136
9.2 SGGET . 136
9.3 SGGETCONSTRAINTS . 136
9.4 SGLABELS . 136
9.5 SGOPEN . 137
9.6 SGSET . 137

10Software License 139

4 | 1 INTRODUCTION User’s manual

1 Introduction

The Matrix Canonical Structure (MCS) Toolbox for Matlab1 provides a framework with data
type objects for representing canonical structures and computational functions related to
canonical forms.

Current version supports canonial structures of

• matrices (under similarity, congruence, and *congruence),

• matrix pencils G − sH (under equivalence, and symmetric and skew-symmetric pencils
under congruence),

• matrix polynomials P (s) = Pds
d + ...+ P1 + P0, where Pd 6= 0,

• system pencils (under feedback-injection equivalence)[
A B
C D

]
− s

[
I 0
0 0

]
associated with the state-space system

ẋ = Ax(t) +Bu(t),

y = Cx(t) +Du(t),

and particular systems thereof.

The MCS toolbox includes routines for computing the canonical structure information using
staircase algorithms. These are based on the GUPTRI (Generalized UPper TRIangular) al-
gorithm [Demmel & Kågström, 1993] for matrix pencils. The GUPTRI form reveals the fine
canonical structure information of a matrix pencil. For example, for a linearized model we
can compute its canonical structure and then let StratiGraph determine and visualize nearby
structures in the closure hierarchy.

The toolbox is based on the prototype Matrix Canonical Structure toolbox described in [Johans-
son, 2006], however, the majority of the code has been rewritten and many of the functions
are modified or have been removed.

1.1 Installation

Download the package from

https://www.umu.se/en/stratigraph-mcs/.

Unpack and save the code in desired location and add it (and subdirectories) to the Matlab
search path.

To avoid problems together with StratiGraph, do not save MCS Toolbox in a path which has
blank spaces in it.

For the function gsylve for solving the generalized Sylvester matrix equation, the toolbox in-
cludes pre-compiled mex-file for MS Windows. If needed or to run guptri on Linux or macOS,
the included source file guptri/private/gsylve.cpp can be compiled as shown below. It requires
to have a compatible C++ compiler and Matlab R2018a or higher. Depending on OS, run the
appropriate call below in Matlab.

1Matlab is a registered trademark of The MathWorks, Inc.

MCS Toolbox, v0.7 1 INTRODUCTION | 5

MS Windows:

> mex -llibmwlapack gsylve.cpp

Linux or macOS:

> mex -lmwlapack gsylve.cpp

1.2 StratiGraph Connection

There exist interface functions for communicating with the complementary software Strati-
Graph. These functions are distributed together with the Matlab plug-in for StratiGraph. For
installation and usage see the README-file in the StratiGraph distribution (can be downloaded
from https://www.umu.se/en/stratigraph-mcs/). For completeness, the interface functions to
StratiGraph are also included in this user’s manual in Section 9.

1.3 Compatibility

For full functionality the toolbox requires Matlab version 9.4 (R2018a) or later. The require-
ments for individual parts are:

Functions Minimum Matlab version
Core 7.6 (R2008a)
Guptri 9.4 (R2018a)
StratiGraph interface 8.2 (R2013b)

1.4 Contact

For questions and comments please contact:

Stefan Johansson, stefanj@cs.umu.se

Department of Computing Science
Umeå University
SE - 901 87 Umeå, Sweden

1.5 Developers and Scientific Contributors

MCS Toolbox is developed at the Department of Computing Science, Umeå University (Swe-
den) by the following people.

Project leader and main programmer: Stefan Johansson. Parts written by: Pedher Johansson
and Andrii Dmytryshyn.

Scientific contribution: Bo Kågström, Erik Elmroth, Pedher Johansson, Stefan Johansson, and
Andrii Dmytryshyn.

A Special thanks to our collaborators: Alan Edelman (MIT, Massachusetts) and Paul Van
Dooren (UCL, Belgium).

6 | User’s manual

1.6 Bibliography

J. Demmel and B. Kågström. The Generalized Schur Decomposition of an Arbitrary Pencil A−
λB: Robust Software with Error Bounds and Applications. Part I: Theory and Algorithms
and Part II: Software and Applications. ACM Trans. Math. Software, Vol.19(2), pp.160-174,
175-201, 1993.

A. Dmytryshyn, S. Johansson, and B. Kågström. Codimension computations of congruence
orbits of matrices, symmetric and skew-symmetric matrix pencils using Matlab. Technical
report UMINF 13.18, Department of Computing Science, Umeå University, Sweden, 2013.

P. Johansson. Matrix Canonical Structure Toolbox. Technical report UMINF 06.15, Depart-
ment of Computing Science, Umeå University, Sweden, 2006.

MCS Toolbox, v0.7 2 TOOLBOX SUMMARY | 7

2 Toolbox summary

Matrix Canonical Structure (MCS) Toolbox
Version 0.7

The following canonical structures are available
mstruct - for matrices under similarity,
cmstruct - for matrices under congruence,
scmstruct - for matrices under *congruence,
pstruct - for matrix pencils under equivalence,
spstruct - for symmetric matrix pencils,
sspstruct - for skew-symmetric matrix pencils,
mpstruct - for matrix polynomials,
ssstruct - for state-space system pencils.

A canonical structure object is created by calling the constructor of
the canonical structure class.

Common methods for canonical structure objects:
codim - Compute the codimension of a canonical structure object.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for an empty canonical structure object.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist in the canonical structure object.
copy - Return a copy of the canonical structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of valid canonical blocks.

Available canonical blocks are:
fjblock - Jordan block associated with a finite eigenvalue.
zjblock - Jordan block associated with the zero eigenvalue.
ijblock - Jordan block associated with the infinite eigenvalue.
rsblock - Right singular block.
lsblock - Left singular block.
gblock - Gamma block.
sgblock - *Gamma block associated with a complex parameter.
wblock - W block associated with a specified eigenvalue.
swblock - *W block associated with a specified eigenvalue.
mblock - Singular symmetric M block.
smblock - Singular skew-symmetric SM block.
hblock - Symmetric H block associated with a finite or

unspecified eigenvalue.
shblock - Skew-symmetric SH block associated with a finite or

unspecified eigenvalue.
kblock - Symmetric K block associated with the infinite eigenvalue.
skblock - Skew-symmetric K block associated with the infinite

eigenvalue.

8 | 2 TOOLBOX SUMMARY User’s manual

The two tables below show which blocks are available for each canonical
structure.

mstruct cmstruct scmstruct
fjblock x
zjblock x x x
gblock x
sgblock x
wblock x
swblock x

pstruct spstruct sspstruct mpstruct ssstruct
fjblock x x x
zjblock x x x
ijblock x x x
rsblock x x x
lsblock x x x
mblock x
smblock x
hblock x
shblock x
kblock x
skblock x

Available canonical forms are:
jcf/jnf - Jordan Canonical Form
ccf - Congruent Canonical Form
kcf - Kronecker Canonical Form
bcf - (generalized) Brunovsky Canonical Form

The table below shows which form(s) is(are) available for each
canonical structure.

jcf ccf kcf bcf
mstruct x
cmstruct x
scmstruct x
pstruct x
spstruct x
sspstruct x
mpstruct
ssstruct x x

Computational functions
pguptri - Compute the canonical structure information of a matrix pencil.
pcluster - Compute and cluster generalized eigenvalues of a matrix pencil.
pggallery - Test matrix pencils for staircase computation and bounds.

[x] below can be one of the prefixes:
m - matrices under similarity,
cm - matrices under congruence,

MCS Toolbox, v0.7 2 TOOLBOX SUMMARY | 9

scm - matrices under *congruence,
p - matrix pencils under equivalence,
sp - symmetric matrix pencils,
ssp - skew-symmetric matrix pencils,
s2 - controllability or observability system pencils.

[x]codim - Computes the codimension.
[x]tanspace - Computes the tangent space.

Notation conversion
segre2weyr - Weyr from Segre characteristics.
weyr2segre - Segre from weyr characteristics.
weyr2sizes - Block sizes from weyr characteristics.
sizes2weyr - Weyr characteristics from block sizes.
sizes2segre - Segre characteristics from block sizes.

Auxiliary functions
mcstolerance - Set tolerance parameters used by MCS Toolbox.
mcsformat - Set format to display structure and block objects.
mcsgetvalidblocks - Return a list of available canonical blocks.
mcsevclmth - Set default method used to cluster eigenvalues in MCS Toolbox.

10 | 3 AUXILIARY FUNCTIONS User’s manual

3 Auxiliary functions

3.1 MCSFORMAT

Set format to display structure and block objects.

mcsformat with no argument sets the output format to display canonical
structure and block objects in MCS Toolbox to the default block format.

The output format can be changed to different formats as follows:
mcsformat block Canonical block format.
mcsformat segre Segre-type characteristics, where the sizes of the

canonical blocks are in non-increasing order.
mcsformat segrec A compact variant of segre where multiple blocks

of the same size is written as n*..., where n is
the number of blocks.

mcsformat weyr Weyr-type characteristics representation of the
canonical blocks, where the integer in position k
is the number of blocks greater than or equal to
k for regular blocks or k-1 for singular blocks.

mcsformat sizes Same as segre but where the sizes of the canonical
blocks may be unordered (displyed in the order
they where created).

mcsformat can also be called as a function:
mcsformat(Fmt)

where Fmt is the output format as a string. For example
mcsformat('segre')

mcsformat(Fmt, Persistent) also set if the used format shall be
persistent between Matlab sessions (Persistent = true) or not
(Persistent = false). Default is false.

Fmt = mcsformat returns the current output format as a string.
[Fmt,IsPersistent] = mcsformat also returns if the used format is
persistent between Matlab sessions or not.

3.2 MCSGETVALIDBLOCKS

Return a list of available canonical blocks.

mcsgetvalidblocks returns a list of all available canonical block
objects.

mcsgetvalidblocks(StructHandle) returns the list of valid canonical
block objects for the specified canonical structure StructHandle, where
StructHandle can be a canonical structure object, the name of the
canonical structure class as a string, or the class given as a
meta.class object.

See also mcsstruct/getvalidblocks, meta.class.

MCS Toolbox, v0.7 3 AUXILIARY FUNCTIONS | 11

3.3 MCSTOLERANCE

Default tolerance parameters used by MCS Toolbox.

T = mcstolerance returns the two-element row vector T = [Tol, Gap]
containing the default tolerance parameters used for the functions in
the toolbox. The default values are Tol = 1e-12 and Gap = 1000, if they
have not been changed (see below). The tolerances can also usually be
overridden by giving them as parameters to the individual routines.

[Tol,Gap] = mcstolerance returns the tolerance parameters as separate
output variables.

[Tol,Gap,IsPersistent] = mcstolerance also returns if the used
tolerance parameters are persistent between sessions or not.

mcstolerance(Tol,Gap) The positive parameters Tol and Gap is set as
default tolerance parameters in all toolbox routines. Tol should
reflect the relative uncertainty in the data and should be at least
about eps (nominally between 1e-8 and 1e-12). Gap determines the ratio
between the smallest preserved singular value and the largest singular
value imposed to zero. Gap should be at least 1 (nominally 1000).

mcstolerance(Tol,Gap,Persistent) The values of Tol and Gap can be made
persistent between Matlab sessions by setting the parameter Persistent
to non-zero (true). Default is false.

If the value of Gap is set to zero or if the value of Tol is less then
eps a warning is issued. This warning message can be suppressed by
typing

warning('off','MCS:mcstolerance:ZeroTolerance')

See also mcsevclmth.

3.4 MCSEVCLMTH

Default method used to cluster eigenvalues in MCS Toolbox.

CLMethod = mcsevclmth returns the name of the used method to cluster
eigenvalues in the toolbox as a string. If no default method is previously
set, the 'var' method is returned (see below). The default method can
usually be overriden by a parameter to the individual functions.

[CLMethod,IsPersistant] = mcsevclmth also returns if the used method is
persistent between sessions or not.

mcsevclmth(Method) sets the default method to cluster eigenvalues.
Valid methods are the following:

'norm' - Use an "over-simple" method where the tolerance
parameter is used to separate different clusters.
See also private/cenorm.

12 | 3 AUXILIARY FUNCTIONS User’s manual

'var', 'min', 'max', 'avg', 'mean'
- Use a hierarchical clustering algorithm where the
clustering is determined by a distance function.
See also private/cehierarchy.

'gersh' - Use a method based on Gershgorin circles to cluster
the eigenvalues.
See also private/mcegershgorin, private/pcegershgorin.

mcsevclmth(Method,Persistent) also set if the used cluster method shall be
persistent between sessions (Persistent = true) or not (Persistent = false).
Default is false.

See also pguptri, mguptri, pcluster, mcluster.

3.5 SEGRE2WEYR

Weyr from Segre characteristics.

segre2weyr(Segre,Type) converts an array with the block sizes given in
Segre characteristics to an array with their sizes presented in Weyr
characteristics. The parameter Type gives the type of the blocks and
can be:

'regular' for regular (Jordan-type) blocks,
'singular' for singular blocks.

See also weyr2sizes, weyr2segre, sizes2weyr, sizes2segre.

3.6 SIZES2SEGRE

Segre characteristics from block sizes.

sizese2segre(Sizes) converts an array with the block sizes to an array
with their sizes represented in Segre characteristics, i.e., the block
sizes sorted in a non-increasing order.

See also weyr2sizes, weyr2segre, segre2weyr, sizes2weyr.

3.7 SIZES2WEYR

Weyr characteristics from block sizes.

sizese2weyr(Sizes,Type) converts an array with the block sizes to an
array with their sizes represented in Weyr characteristics. The
parameter Type gives the type of the blocks and can be:

'regular' for regular (Jordan-type) blocks,
'singular' for singular blocks.

See also weyr2sizes, weyr2segre, segre2weyr, sizes2segre.

MCS Toolbox, v0.7 3 AUXILIARY FUNCTIONS | 13

3.8 WEYR2SEGRE

Segre from Weyr characteristics.

weyr2segre(Weyr,Type) converts an array with the block sizes given in
Weyr characteristics to an array with the blocks' sizes in Segre
characteristics, i.e., the sizes of the blocks sorted in non-increasing
order. The parameter Type gives the type of the blocks and can be:

'regular' for regular (Jordan-type) blocks,
'singular' for singular blocks.

See also weyr2sizes, segre2weyr, sizes2weyr, sizes2segre.

3.9 WEYR2SIZES

Block sizes from Weyr characteristics.

weyr2sizes(Weyr,Type) converts an array with the block sizes given in
Weyr characteristics to an array with the blocks' sizes. The parameter
Type gives the type of the blocks and can be:

'regular' for regular (Jordan-type) blocks,
'singular' for singular blocks.

See also weyr2segre, segre2weyr, sizes2weyr, sizes2segre.

14 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

4 Canonical Structure Objects

4.1 MCSSTRUCT

Abstract class for generic canonical structures.

mcsstruct provides templates and generic methods for canonical
structure objects.

StructObj =
mcsstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...,'Notation',Notation)
creates a new structure object with the specified blocks.

mcsstruct Methods:
codim - Compute the codimension of a canonical structure object.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for an empty canonical structure object.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist in the canonical structure object.
copy - Return a copy of the canonical structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of valid canonical blocks.
getsgconstraints - Return a list of available StratiGraph constraints.

mcsstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also mcsblock.

Reference page in Doc Center
doc mcsstruct

Class methods

getsgconstraints Return a list of available StratiGraph constraints.

getsgconstraints returns a list of all available constraints for the
corresponding setup in StratiGraph. The returned list is a cell-array
of strings.

See also sggetconstraints.

getvalidblocks Return a list of valid canonical blocks.

getvalidblocks(StructObj) returns a list of all valid canonical

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 15

block objects for StructObj.

See also mcsgetvalidblocks.

subsref Subscripted reference for canonical structure objects.

The canonical blocks in a structure object StructObj can be
accessed by the subscripts 'StructObj(k)' and 'StructObj{k}',
which have different meanings. The subscript '()' returns a new
canonical structure object with the same canonical structure as
the specified block(s). Consequently, 'StructObj(:)' returns a
copy of the structure object StructObj. The subscript '{}'
returns the specified block objects in separate outputs. Note
that for '{}' the returned block objects refers to the same
objects as in the original canonical structure (for an example
see below).

Examples (exemplified with matrix pencils):
>> pstr = pstruct([0 1], 0, 1, 1e-4i)
>> pstr([1 3])
ans =

R = (1 0) (1x3)
J(0+0.0001i) = (1) (1x1)

Class methods may be applied directly to the subobject (by
chaining call):

>> [G,H] = pstr([1 3]).kcf
G =

0+0i 0+0i 1+0i 0+0i
0+0i 0+0i 0+0i 0+0.0001i

H =
0 1 0 0
0 0 0 1

>> [b1,b2] = pstr{1:2}
b1 =

R = (1 0) (1x3)
b2 =

L = (0) (1x0)

Changing the block object b1 or b2 will also change the
canonical structure of pstr:

>> b1.set('StructInt',[2 1]);
>> pstr
pstr =

R = (2 1) (3x5)
L = (0) (1x0)

J(0+0.0001i) = (1) (1x1)

16 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

Chaining call with '{}' is only possible if one single
subscript is given, for example:

>> [G,H] = pstr{1}.kcf
G =

0 0 1
H =

0 1 0

See also get.

get Get the canonical structure information.

V = get(StructObj,'PropertyName') returns the value of the
specified property for the canonical structure object StructObj.
V = get(StructObj,'PropertyName1','PropertyName2',...) may be
used to refine which property to return.

The property name can be in any order (described below):
1) Any valid canonical block name.
2) 'StructInt', 'Parameter', or 'Eigenvalue'.
3) Any valid notation.
4) 'Unroll'
5) 'Object' (properties of type 2, 3, and 4 are ignored).

1)
By specifying any valid block name get returns the structure
integer partition and any parameter associated with the canonical
blocks of type PropertyName. Multiple block names can be
specified. If no block names are given, properties for all
existing blocks are returned. PropertyName is a string and
can, e.g., be one of:

'sblock' - Singular blocks (both right and left)
'rsblock' - Right singular blocks
'lsblock' - Left singular blocks
'jblock' - Jordan blocks (both finite and infinite

eigenvalues)
'fjblock' - Jordan blocks associated with finite eigenvalues

For a complete list of all valid canonical blocks for specific
structure use the method getvalidblocks, see also
mcsgetvalidblocks. Calling mcsgetvalidblocks without any
arguments will return all implemented canonical block classes.

The returned V is a cell-array, where each element in V is a
vector with the sizes of corresponding canonical block. For
blocks associated with a parameter (e.g. an eigenvalue) the size
vector and the parameter are combined in a cell-array tuple, one
for each parameter. If more than one block name is given, then
all structure integer partitions corresponding to the same block
class are gathered in a cell-array. V will then have the same

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 17

length as number of specified blocks.

Example 1:
>> pstr = pstruct([3 1],[2 0],{[2 1] [3]},[3 0]);
>> V = pstr.get('lsblock','fjblock');

Then V = {[2 0], {{[2 1], 3}, {[3], 0}}}, i.e., the matrix
pencil object pstr has two left singular blocks of sizes 3x2
and 1x0, two Jordan blocks of sizes 2x2 and 1x1 both associated
with the eigenvalue 3, and one Jordan block of size 3x3
associated with the zero eigenvalue.

[V,Param] = get(StructObj,'Blockname') returns the structure
integer partitions in the cell-array V and the associated
parameters in the vector Param, where V{k} has the parameter
Param(k).

[V,Param] = get(StructObj,'Blockname1','Blockname2',...) returns
the structure integer partitions and the parameters in two
separate cell-arrays. If the canonical block(s) in V{k} has/have
an associated parameter, then the associated parameter of the
blocks V{k}{j} is Param{k}(j). If no parameter exist for block k,
Param{k} is empty.

If StructObj is a vector of length M of structure objects, then V
(and Param) will be M-by-X cell-array of values (some may be
empty), where X is the number of requested canonical blocks in
the structure.

2)
It is also possible to specify which information to return.
'StructInt' only returns the structure integer partition, and
'Parameter' or 'Eigenvalue' the associated parameter (e.g.
eigenvalue).

3)
The notation of the structure integer partition can be specified
by setting any property name to one of:

'sizes' Sizes may be unordered. (Default)
'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.

4)
By passing 'Unroll' as a property, multiple blocks of same class
are not encapsulated in a struct. Instead they are appended to
the cell-array V as separate vectors. This option is only
available if one of 'StructInt' or 'Parameter'/'Eigenvalue' is
specified, not both.

Example 2 (compare with Example 1):
>> pstr = pstruct([3 1],[2 0],{[2 1] [3]},[3 0]);

18 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

>> V = pstr.get('lsblock','fjblock','StructInt','Unroll');

Returns the cell-array V = {[3 1], [2 1], [3]}.

5)
By passing 'Object' as a property, the associated canonical block
objects will be returned in the cell-array V. In this case, any
parameter specifying notation and/or which information to return
is neglected.

See also set, mcsblock, getvalidblocks, subsref.

set Set the canonical structure information (not implemented).

set is not implemented for canonical structure objects.
Instead use the following procedure to change any canonical
structure information.

1. Obtain the canonical block object(s) which is/are going to be
modified. Example (where pstr is a pstruct object):
>> blkobj = pstr.get('lsblock','object');

2. Modify the block object by using set(). Example:
>> blkobj{1}.set('StructInt',[3 1]);

3. Done!

See also get, mcsblock/set

copy Return a copy of the canonical structure object.

StructObjNew = copy(StructObj) returns a copy of the canonical
structure object StructObj.

exist Check if a canonical block of a specified type already exists.

B = exist(StructObj,BlockClass) returns 1 (true) if a canonical
block object of type BlockClass already exist in the structure
object StructObj and 0 (false) otherwise. BlockClass can either
be as a string or a canonical block object.

B = exist(StrObj,BlockClass,Param) is used when the canonical
block object also has a parameter, e.g., an eigenvalue.

disp Display a canonical structure object.

disp(StructObj) is called for the structure object StructObj
when the semicolon is not used to terminate a statement. Returns
the canonical form represented as a string.

char Convert a structure object to a string.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 19

S = char(StructObj) returns the canonical structure information
of the structure object StructObj as a string in canonical block
notation.

See also mcsblock/char.

compare Compare two canonical structure objects.

C = compare(S1,S2) compares the two canonical structure objects S1 and
S2 of the same class and returns a vector C with the same length as
number of existing canonical blocks. The two canonical structure
objects must have the same number of canonical blocks.

The comparison is done by comparing the sizes of the canonical blocks
for each pair of blocks (B1,B2) of the same class from S1 and S2,
respectively. For each type of canonical block; first the largest block
from each block object are compared then the second largest until one
is larger than the other or no more blocks exist. The corresponding
element in C is 0 if the blocks B1 and B2 are equal, 1 if B1 > B2, and
-1 if B1 < B2. Consequently, if all elements in C are 0 then S1 and S2
have the same block structure. Any parameters are not compared, but
have an impact on which block objects is compared to which block
object. A block in S1 which does not exist in S2 always returns 1.

C = compare(S1,S2,'weyr') uses the Weyr characteristics resulting in
that the comparison is done by comparing the number of blocks. First
the number of all blocks are compared then the number of second
smallest and larger blocks until one quantity is larger than the other.

[C2, D] = compare(S1,S2,Tol) or
[C2, D] = compare(S1,S2,'weyr',Tol) returns the 2-column matrix C2 =
[C,P], where C is the result from above and the P(k) is the result from
comparing the corresponding parameter (eigenvalue) of the block C(k).
It uses the tolerance Tol for comparing the parameters. P(k) = 0 if
abs(p1-p2) <= Tol for all parameters p1 and p2 from the same block
class in S1 and S2, respectively, otherwise P returns 1. For blocks
with no parameter, Tol is ignored and the corresponding element in P is
0. Consequently, if both S and P are 0 then the two structures are
equal with respect to Tol. The optional D returns the difference
abs(p1-p2) between the two parameters, or NaN if the blocks have no
parameter.

C = compare(S1,S2,'size') only compares the total sizes (m*n) of
structure objects. Returns 0 if equal, 1 if S1 > S2, and -1 if S1 < S2.

See also eq.

isempty True for empty canonical structure.

isempty(StructureObj) returns 1 if StructureObj is an empty

20 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

canonical structure object and 0 otherwise. An empty structure
object has no canonical blocks or all are empty.

numblk Number of canonical block objects.

N = numblk(StructObj) returns the number of canonical block
objects of different types in the structure object StructObj.
Canonical blocks with equal parameters (eigenvalues) are of the
same type, while blocks with different parameters are not.

See also size, mcsblock/numblk.

size Total size of the represented structure.

D = size(StructObj) returns a two-element row vector D = [M, N]
containing the number of rows M and columns N of the structure
object in matrix or matrix pencil form, i.e., the sum of the
sizes of all the canonical blocks.

[M,N] = size(StructObj) returns the number of rows and columns in
separate output variables.

size(StructObj,Dim) returns the length of the dimension specified
by the scalar Dim. For example, size(StructObj,1) returns the
number of rows.

eq (==) Equal relation between two structure objects.

StructObj1 == StructObj2 checks if the two canonical structure
objects are equal.

See also ne, compare.

ne (∼=) Not equal relation between two structure objects.

StructObj1 ∼= StructObj2 checks if the two canonical structure
objects are not equal.

See also eq, compare.

4.2 CMSTRUCT

Create a congruence matrix structure object.

cmstruct creates a canonical structure object representing a matrix
A in its canonical form under congruence.

A cmstruct object can consist of the following three canonical blocks:
gblock - Gammma block defined as:

|0 . .|

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 21

| . . |
Gamma_n := | 1 1 | n-by-n

| -1 -1 |
|1 1 0|

wblock - W block associated with a specified and admissible
eigenvalue mu, defined as:

| 0 I_n|
W_n := | | 2n-by-2n

|J_n(mu) 0 |
where mu ∼= {0, (-1)^(n+1)} and J_n(mu) is an n-by-n Jordan
block associated with the eigenvalue mu.

zjblock - Jordan block associated with the zero eigenvalue,
defined as:

|0 1 0|
J_n(0) := | 0 . | n-by-n

| . 1|
|0 0|

StructObj = cmstruct() returns an empty canonical structure object
StructObj representing a matrix A under congruence. The canonical
structure information can be specified using one of the three forms
'Size vector form', Property-value form', or 'Object form', which are
explained below.

Size vector form

StructObj = cmstruct(GBlocks,WBlocksv,Eigv) returns a new canonical
structure object StructObj representing a matrix A under congruence.
The parameter GBlocks defines the Gamma blocks of the structure and is
given as row-vectors with the sizes of the blocks. The parameter
WBlocksv defines the W blocks associated with the finite Jordan blocks
of the structure and must be a cell-array of row-vectors where each
vector contains the sizes of blocks associated with the same
eigenvalue. Eigv is a row-vector with the values of each associated
eigenvalue corresponding to the row-vectors in WBlocksv, where the
eigenvalues must be non-zero complex scalars not equal to (-1)^('size
of the block'/2 + 1) for all blocks associated with the same
eigenvalue.

StructObj = cmstruct(GBlocks,WBlocksv,Eigv,ZJBlocks) also sets the
sizes of the Jordan blocks with an associated zero eigenvalue.

Property-value form

StructObj =
cmstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...) specifies
the block types BlockName and the sizes StructInt in property-value
form. BlockName is a string specifying the canonical block to be

22 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

created, and can be one of:
'gblock' - Gamma blocks
'wblock' - W blocks associated with finite eigenvalues
'zjblock' - Jordan blocks associated with the zero eigenvalue.

W blocks associated with a specified finite eigenvalue are given as a
cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> cmstr = cmstruct('wblock',{[3 2],2},'wblock',{[1], 4})
creates a structure object with one W block of size 6x6 and
one of size 4x4 both with the associated eigenvalue 2, and one
W block of size 2x2 with associated the eigenvalue 4.

cmstruct('BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = cmstruct(BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must
be valid blocks for the structure.

Examples:
>> cmstr = cmstruct([],[3 1],4,[1])
returns a matrix structure with one W block of size 6x6 and
one of size 2x2 both with the associated eigenvalue 4, and one
Jordan block of size 1x1 with the zero eigenvalue.

Alternatively, the same structure can be created with
>> cmstr = cmstruct('zjblock',1,'wblock',{[3 1],4})

>> cmstr = cmstruct([], {[2] [1]}, [1 3], [2])
returns a matrix of the following form:

| W2(1) 0 0 |
| 0 W1(3) 0 |
| 0 0 J2(0) |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class cmstruct provides the following methods for extracting
information and modifying the canonical structure object.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 23

cmstruct Methods:
codim - Compute the codimension of a matrix under congruence.
ccf - Return the matrix in the congruence canonical form.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of available canonical blocks.

cmstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also gblock, wblock, zjblock, scmstruct, mstruct.

Reference page in Doc Center
doc cmstruct

Class methods

codim Compute the codimension of a matrix under congruence.

codim(StructObj) determines the codimension of the congruence orbit of
the matrix structure object StructObj. The codimension is determined
with respect to the represented canonical structure not the tangent
space.

codim(StructObj,Strata) where the optional argument Strata can be
'orbit' Determines the codimension of the orbit.

Assumes that all eigenvalues are specified.
(default)

'bundle' Not implemented!

See also cmcodim.

cmstruct Create a congruence matrix structure object.

cmstruct creates a canonical structure object representing a matrix
A in its canonical form under congruence.

A cmstruct object can consist of the following three canonical blocks:
gblock - Gammma block defined as:

|0 . .|
| . . |

24 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

Gamma_n := | 1 1 | n-by-n
| -1 -1 |
|1 1 0|

wblock - W block associated with a specified and admissible
eigenvalue mu, defined as:

| 0 I_n|
W_n := | | 2n-by-2n

|J_n(mu) 0 |
where mu ∼= {0, (-1)^(n+1)} and J_n(mu) is an n-by-n Jordan
block associated with the eigenvalue mu.

zjblock - Jordan block associated with the zero eigenvalue,
defined as:

|0 1 0|
J_n(0) := | 0 . | n-by-n

| . 1|
|0 0|

StructObj = cmstruct() returns an empty canonical structure object
StructObj representing a matrix A under congruence. The canonical
structure information can be specified using one of the three forms
'Size vector form', Property-value form', or 'Object form', which are
explained below.

Size vector form

StructObj = cmstruct(GBlocks,WBlocksv,Eigv) returns a new canonical
structure object StructObj representing a matrix A under congruence.
The parameter GBlocks defines the Gamma blocks of the structure and is
given as row-vectors with the sizes of the blocks. The parameter
WBlocksv defines the W blocks associated with the finite Jordan blocks
of the structure and must be a cell-array of row-vectors where each
vector contains the sizes of blocks associated with the same
eigenvalue. Eigv is a row-vector with the values of each associated
eigenvalue corresponding to the row-vectors in WBlocksv, where the
eigenvalues must be non-zero complex scalars not equal to (-1)^('size
of the block'/2 + 1) for all blocks associated with the same
eigenvalue.

StructObj = cmstruct(GBlocks,WBlocksv,Eigv,ZJBlocks) also sets the
sizes of the Jordan blocks with an associated zero eigenvalue.

Property-value form

StructObj =
cmstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...) specifies
the block types BlockName and the sizes StructInt in property-value
form. BlockName is a string specifying the canonical block to be
created, and can be one of:

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 25

'gblock' - Gamma blocks
'wblock' - W blocks associated with finite eigenvalues
'zjblock' - Jordan blocks associated with the zero eigenvalue.

W blocks associated with a specified finite eigenvalue are given as a
cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> cmstr = cmstruct('wblock',{[3 2],2},'wblock',{[1], 4})
creates a structure object with one W block of size 6x6 and
one of size 4x4 both with the associated eigenvalue 2, and one
W block of size 2x2 with associated the eigenvalue 4.

cmstruct('BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = cmstruct(BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must
be valid blocks for the structure.

Examples:
>> cmstr = cmstruct([],[3 1],4,[1])
returns a matrix structure with one W block of size 6x6 and
one of size 2x2 both with the associated eigenvalue 4, and one
Jordan block of size 1x1 with the zero eigenvalue.

Alternatively, the same structure can be created with
>> cmstr = cmstruct('zjblock',1,'wblock',{[3 1],4})

>> cmstr = cmstruct([], {[2] [1]}, [1 3], [2])
returns a matrix of the following form:

| W2(1) 0 0 |
| 0 W1(3) 0 |
| 0 0 J2(0) |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class cmstruct provides the following methods for extracting
information and modifying the canonical structure object.

cmstruct Methods:

26 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

codim - Compute the codimension of a matrix under congruence.
ccf - Return the matrix in the congruence canonical form.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of available canonical blocks.

cmstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also gblock, wblock, zjblock, scmstruct, mstruct.

4.3 MPSTRUCT

Create a matrix polynomial structure object.

mpstruct creates a canonical structure object representing a matrix
polynomial P(s) = P_d s^d + ... + P_1 s + P_0, where P_d ∼= 0. The
invariants are represented as Kronecker canonical blocks of a matrix
pencil with the same invariants as P(s).

An mpstruct object can consist of the following canonical blocks:
rsblock - Right singular block defined as:

|0 1 0| |1 0 0|
L_n := | . . | - s| . . | n-by-(n+1)

|0 0 1| |0 1 0|

lsblock - Left singular block defined as:
|0 0| |1 0|

L_n^T := |1 . | - s|0 . | (n+1)-by-n
| . 0| | . 1|
|0 1| |0 0|

fjblock - Jordan block associated with a finite eigenvalue mu,
defined as:

|mu 1 0|
J_n(mu) - s*I_n := | mu . | - s*I_n n-by-n

| . 1|
|0 mu|

zjblock - Jordan block associated with the zero eigenvalue (mu=0).

ijblock - Jordan block associated with the infinite eigenvalue,

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 27

defined as:
|1 0 0| |0 1 0|

N_n := | 1 . | - s| 0 . | n-by-n
| . 0| | . 1|
|0 1| |0 0|

StructObj = mpstruct() returns an empty canonical structure object
StructObj representing a matrix polynomial

P(s) = P_d s^d + ... + P_1 s + P_0, where P_d ∼= 0,
of degree d. To follow the declarations of the other canonical
structure objects, the invariants of P(s) are represented in the form
of canonical blocks associated with the Kronecker canonical form of a
matrix pencil with the same invariants as P(s). The degree d ensures
that the matrix polynomial is unique. The canonical structure
information can be specified using one of the three forms 'Size vector
form', Property-value form', or 'Object form', which are explained
below.

Size vector form

StructObj = mpstruct(d,RSBlocks,LSBlocks,FJBlocksv) returns a new
canonical structure object StructObj representing a matrix polynomial.
The parameters RSBlocks and LSBlocks define the right and left singular
blocks (associated with the column and row minimal indices),
respectively, of the structure and are given as row-vectors with the
sizes of the blocks. The parameter FJBlocksv defines the Jordan blocks
(associated with the finite elementary divisors) of the structure and
must be either a row-vector with the sizes of Jordan blocks, all
associated with the same eigenvalue, or a cell-array of row-vectors
where each vector contains the sizes of blocks associated with the same
eigenvalue. By default the associated eigenvalues are set to
unspecified (NaN).

StructObj = mpstruct(d,RSBlocks,LSBlocks,FJBlocksv,Eigv) also sets the
eigenvalues, where Eigv is a row-vector with the values of each
associated eigenvalue corresponding to the row-vectors in FJBlocksv.
Jordan blocks with an unspecified associated eigenvalue are defined by
setting the corresponding eigenvalue in Eigv to NaN.

StructObj = mpstruct(d,RSBlocks,LSBlocks,FJBlocksv,Eigv,IJBlocks) also
sets the sizes of the Jordan blocks with an associated infinite
eigenvalue (associated with the infinite elementary divisors).

Property-value form

StructObj =
mpstruct(d,'BlockName1',StructInt1,'BlockName2',StructInt2,...)
specifies the block types BlockName and the sizes StructInt in
property-value form. BlockName is a string specifying the canonical
block to be created, and can be one of:

28 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

'rsblock' - Right singular blocks
'lsblock' - Left singular blocks
'fjblock' - Jordan blocks associated with finite eigenvalues
'zjblock' - Jordan blocks associated with the zero eigenvalue
'ijblock' - Jordan blocks associated with the infinite

eigenvalue
Jordan blocks associated with a specified finite eigenvalue are given
as a cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> mpstr = mpstruct(3,'fjblock',{[3 2],0},'fjblock',{[1], -3})
creates a matrix polymomial structure object of degree 3 with one
Jordan block of size 3x3 and one of size 2x2 both with eigenvalue 0,
and one Jordan block of size 1x1 with eigenvalue -3.

mpstruct(d,'BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = mpstruct(d,BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must
be valid blocks for the structure.

Examples:
>> mpstr = mpstruct([],[2],[3 1],4,[1])
returns a matrix polynomial structure with one left singular block
of size 3x2, one Jordan block of size 3x3 and one of size 1x1 both
with eigenvalue 4, and one Jordan block of size 1x1 with an infinite
eigenvalue.

Alternatively, the same structure can be created with
>> mpstr = mpstruct('lsblock',2,'ijblock',1,'fjblock',{[3 1],4})

>> mpstr = mpstruct([], [], {[2] [1]}, [1 3], [2])
returns a matrix polynomial of the following form:

| J2(1) 0 0 |
| 0 J1(3) 0 |
| 0 0 N2 |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class mpstruct provides the following methods for extracting

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 29

information and modifying the canonical structure object.

mpstruct Methods:
codim - Compute the codimension of a matrix polynomial.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
rank - Compute the normal rank.
hasfullrank - True for canonical structure with full normal rank.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of valid canonical blocks.
getsgconstraints - Return a list of available StratiGraph constraints.

mpstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also rsblock, lsblock, fjblock, zjblock, ijblock, pstruct.

Reference page in Doc Center
doc mpstruct

Class methods

size Total size of the represented structure.

S = size(StructObj) returns a three-element row vector S=[M N D]
containing the size M-by-N of the coefficient matrices and degree D of
the matrix polynomial.

[M,N,D] = size(StructObj) returns the number of rows, columns, and
degree in separate output variables.

size(StructObj,Dim) returns the length of the dimension specified by
the scalar Dim, where Dim maps as 1 -> M, 2 -> N, and 3 -> D.

rank Compute the normal rank.

R = rank(StructObj) determines the normal rank R of the matrix
polynomial structure object StructObj from its canonical structure
information. The normal rank is equal to the rank of P(s) at any
complex value s which is not a zero of P(s).

hasfullrank True for canonical structure with full normal rank.

30 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

hasfullrank(StructObj) returns logical 1 (true) if StrcutObj has the
normal rank R = min(m,n) of the matrix polynomial structure object
StructObj, otherwise logical 0 (false).

codim Compute the codimension of a matrix polynomial.

codim(StructObj) determines the codimension of the orbit of the matrix
polynomial structure object StructObj. The codimension is computed from
the invariants of a Fiedler linearization and is determined with
respect to the represented canonical structure not the tangent space.

codim(StructObj,Strata) where the optional argument Strata can be
'orbit' Determines the codimension of the orbit.

Assumes that all eigenvalues are specified. (default)
'bundle' Determines the codimension of the bundle:

codim(bundle) = codim(orbit)
- (number of distinct eigenvalues)

Assumes that all (finite and infinite) eigenvalues are
unspecified.

'semibundle' Determines the codimension of the specified
structure, i.e. the codimension is computed as

codim(bundle) = codim(orbit)
- (number of distinct unspecified eigenvalues)

mpstruct Create a matrix polynomial structure object.

mpstruct creates a canonical structure object representing a matrix
polynomial P(s) = P_d s^d + ... + P_1 s + P_0, where P_d ∼= 0. The
invariants are represented as Kronecker canonical blocks of a matrix
pencil with the same invariants as P(s).

An mpstruct object can consist of the following canonical blocks:
rsblock - Right singular block defined as:

|0 1 0| |1 0 0|
L_n := | . . | - s| . . | n-by-(n+1)

|0 0 1| |0 1 0|

lsblock - Left singular block defined as:
|0 0| |1 0|

L_n^T := |1 . | - s|0 . | (n+1)-by-n
| . 0| | . 1|
|0 1| |0 0|

fjblock - Jordan block associated with a finite eigenvalue mu,
defined as:

|mu 1 0|
J_n(mu) - s*I_n := | mu . | - s*I_n n-by-n

| . 1|
|0 mu|

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 31

zjblock - Jordan block associated with the zero eigenvalue (mu=0).

ijblock - Jordan block associated with the infinite eigenvalue,
defined as:

|1 0 0| |0 1 0|
N_n := | 1 . | - s| 0 . | n-by-n

| . 0| | . 1|
|0 1| |0 0|

StructObj = mpstruct() returns an empty canonical structure object
StructObj representing a matrix polynomial

P(s) = P_d s^d + ... + P_1 s + P_0, where P_d ∼= 0,
of degree d. To follow the declarations of the other canonical
structure objects, the invariants of P(s) are represented in the form
of canonical blocks associated with the Kronecker canonical form of a
matrix pencil with the same invariants as P(s). The degree d ensures
that the matrix polynomial is unique. The canonical structure
information can be specified using one of the three forms 'Size vector
form', Property-value form', or 'Object form', which are explained
below.

Size vector form

StructObj = mpstruct(d,RSBlocks,LSBlocks,FJBlocksv) returns a new
canonical structure object StructObj representing a matrix polynomial.
The parameters RSBlocks and LSBlocks define the right and left singular
blocks (associated with the column and row minimal indices),
respectively, of the structure and are given as row-vectors with the
sizes of the blocks. The parameter FJBlocksv defines the Jordan blocks
(associated with the finite elementary divisors) of the structure and
must be either a row-vector with the sizes of Jordan blocks, all
associated with the same eigenvalue, or a cell-array of row-vectors
where each vector contains the sizes of blocks associated with the same
eigenvalue. By default the associated eigenvalues are set to
unspecified (NaN).

StructObj = mpstruct(d,RSBlocks,LSBlocks,FJBlocksv,Eigv) also sets the
eigenvalues, where Eigv is a row-vector with the values of each
associated eigenvalue corresponding to the row-vectors in FJBlocksv.
Jordan blocks with an unspecified associated eigenvalue are defined by
setting the corresponding eigenvalue in Eigv to NaN.

StructObj = mpstruct(d,RSBlocks,LSBlocks,FJBlocksv,Eigv,IJBlocks) also
sets the sizes of the Jordan blocks with an associated infinite
eigenvalue (associated with the infinite elementary divisors).

Property-value form

StructObj =
mpstruct(d,'BlockName1',StructInt1,'BlockName2',StructInt2,...)

32 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

specifies the block types BlockName and the sizes StructInt in
property-value form. BlockName is a string specifying the canonical
block to be created, and can be one of:

'rsblock' - Right singular blocks
'lsblock' - Left singular blocks
'fjblock' - Jordan blocks associated with finite eigenvalues
'zjblock' - Jordan blocks associated with the zero eigenvalue
'ijblock' - Jordan blocks associated with the infinite

eigenvalue
Jordan blocks associated with a specified finite eigenvalue are given
as a cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> mpstr = mpstruct(3,'fjblock',{[3 2],0},'fjblock',{[1], -3})
creates a matrix polymomial structure object of degree 3 with one
Jordan block of size 3x3 and one of size 2x2 both with eigenvalue 0,
and one Jordan block of size 1x1 with eigenvalue -3.

mpstruct(d,'BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = mpstruct(d,BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must
be valid blocks for the structure.

Examples:
>> mpstr = mpstruct([],[2],[3 1],4,[1])
returns a matrix polynomial structure with one left singular block
of size 3x2, one Jordan block of size 3x3 and one of size 1x1 both
with eigenvalue 4, and one Jordan block of size 1x1 with an infinite
eigenvalue.

Alternatively, the same structure can be created with
>> mpstr = mpstruct('lsblock',2,'ijblock',1,'fjblock',{[3 1],4})

>> mpstr = mpstruct([], [], {[2] [1]}, [1 3], [2])
returns a matrix polynomial of the following form:

| J2(1) 0 0 |
| 0 J1(3) 0 |
| 0 0 N2 |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 33

The class mpstruct provides the following methods for extracting
information and modifying the canonical structure object.

mpstruct Methods:
codim - Compute the codimension of a matrix polynomial.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
rank - Compute the normal rank.
hasfullrank - True for canonical structure with full normal rank.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of valid canonical blocks.
getsgconstraints - Return a list of available StratiGraph constraints.

mpstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also rsblock, lsblock, fjblock, zjblock, ijblock, pstruct.

4.4 MSTRUCT

Create a matrix structure object.

mstruct creates a canonical structure object representing a matrix
A in its canonical form.

An mstruct object can only consist of the canonical blocks:
fjblock - Jordan block associated with a finite eigenvalue mu,

defined as:
|mu 1 0|

J_n(mu) := | mu . | n-by-n
| . 1|
|0 mu|

zjblock - Jordan block associated with the zero eigenvalue.

StructObj = mstruct() returns an empty canonical structure object
StructObj representing a matrix A. The canonical structure information
can be specified using one of the three forms 'Size vector form',
Property-value form', or 'Object form', which are explained below.

34 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

Size vector form

StructObj = mstruct(JBlocksv) returns a new canonical structure object
StructObj representing a matrix. The parameter JBlocksv defines the
Jordan blocks of the structure and must be either a row-vector with the
sizes of Jordan blocks, all with the same associated eigenvalue, or a
cell-array of row-vectors where each vector contains the sizes of
blocks with the same associated eigenvalue. By default the associated
eigenvalues are set to unspecified (NaN).

StructObj = mstruct(JBlocksv, Eigv) also sets the eigenvalues, where
Eigv is a row-vector with the values of each associated eigenvalue
corresponding to the row-vectors in JBlocksv. Jordan blocks with an
unspecified associated eigenvalue are defined by setting the
corresponding eigenvalue in Eigv to NaN.

Property-value form

StructObj = mstruct('fjblock',StructInt1,'fjblock',StructInt2,...)
specifies the Jordan blocks in property-value form, where each
StructInt is the sizes of the blocks associates with the same
eigenvalue. Jordan blocks associated with a specified finite eigenvalue
are given as a cell-array tuple in the form {StructInt Eigenvalue}. The
block 'zjblock' for a Jordan block with zero eigenvalue is also
allowed, but then StructInt can only be a vector with sizes. Note that
an 'fjblock' with a zero eigenvalue is not

StructObj = mstruct('fjblock',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = mstruct(BlockObj1,BlockObj2,...) creates a structure object
from the listed canonical block objects. The block objects must be
valid blocks for the structure.

Examples:
>> mstr = mstruct([3 1])
returns a matrix structure with two Jordan blocks of sizes 3x3 and
1x1, both with the same but unspecified eigenvalue.

Alternatively, the same structure can be created with
>> mstr = mstruct('fjblock',[3 1])

>> mstr = mstruct({[3 2] [1]},[0 -3])
A matrix structure with one Jordan block of size 3x3 and one of size
2x2 both with the eigenvalue 0, and one Jordan block of size 1x1
with the eigenvalue -3.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 35

Alternatively
>> mstr = mstruct('fjblock',{[3 2],0},'fjblock',{[1], -3})

In the property-value form, Jordan blocks associated with the same
finite eigenvalue (not equal to NaN) are joined together, i.e.,
>> mstruct('fjblock',{3,4},'fjblock',{[1 2],4})
returns

J(4) = (3 2 1) (6x6)

However, observe that an 'fjblock' associated with a zero eigenvalue
is not the same as a 'zjblock', e.i.,
>> mstruct('fjblock',{3,0},'zjblock',[1 2])
returns

J(0) = (3) (3x3) <- an fjblock
J(0) = (2 1) (3x3) <- two zjblocks

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class mstruct provides the following methods for extracting
information and modifying the canonical structure object.

mstruct Methods:
codim - Compute the codimension of a matrix.
jcf,JNF - Return the matrix in the Jordan Canonical Form.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of valid canonical blocks.
getsgconstraints - Return a list of available StratiGraph constraints.

mstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also fjblock, zjblock, pstruct.

Reference page in Doc Center
doc mstruct

36 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

Class methods

eig Return the eigenvalues of the canonical structure.

codim Compute the codimension of a matrix.

codim(StructObj) determines the codimension of the orbit of the matrix
structure object StructObj. The codimension is determined with respect
to the represented canonical structure.

codim(StructObj,Strata) where the optional argument Strata can be
'orbit' Determines the codimension of the orbit.

Assumes that all eigenvalues are specified. (default)
'bundle' Determines the codimension of the bundle:

codim(bundle) = codim(orbit)
- (number of distinct eigenvalues)

Assumes that all eigenvalues are unspecified.
'semibundle' Determines the codimension of the specified

structure, i.e. the codimension is computed as
codim(bundle) = codim(orbit)
- (number of distinct unspecified eigenvalues)

See also mcodim.

mstruct Create a matrix structure object.

mstruct creates a canonical structure object representing a matrix
A in its canonical form.

An mstruct object can only consist of the canonical blocks:
fjblock - Jordan block associated with a finite eigenvalue mu,

defined as:
|mu 1 0|

J_n(mu) := | mu . | n-by-n
| . 1|
|0 mu|

zjblock - Jordan block associated with the zero eigenvalue.

StructObj = mstruct() returns an empty canonical structure object
StructObj representing a matrix A. The canonical structure information
can be specified using one of the three forms 'Size vector form',
Property-value form', or 'Object form', which are explained below.

Size vector form

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 37

StructObj = mstruct(JBlocksv) returns a new canonical structure object
StructObj representing a matrix. The parameter JBlocksv defines the
Jordan blocks of the structure and must be either a row-vector with the
sizes of Jordan blocks, all with the same associated eigenvalue, or a
cell-array of row-vectors where each vector contains the sizes of
blocks with the same associated eigenvalue. By default the associated
eigenvalues are set to unspecified (NaN).

StructObj = mstruct(JBlocksv, Eigv) also sets the eigenvalues, where
Eigv is a row-vector with the values of each associated eigenvalue
corresponding to the row-vectors in JBlocksv. Jordan blocks with an
unspecified associated eigenvalue are defined by setting the
corresponding eigenvalue in Eigv to NaN.

Property-value form

StructObj = mstruct('fjblock',StructInt1,'fjblock',StructInt2,...)
specifies the Jordan blocks in property-value form, where each
StructInt is the sizes of the blocks associates with the same
eigenvalue. Jordan blocks associated with a specified finite eigenvalue
are given as a cell-array tuple in the form {StructInt Eigenvalue}. The
block 'zjblock' for a Jordan block with zero eigenvalue is also
allowed, but then StructInt can only be a vector with sizes. Note that
an 'fjblock' with a zero eigenvalue is not

StructObj = mstruct('fjblock',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = mstruct(BlockObj1,BlockObj2,...) creates a structure object
from the listed canonical block objects. The block objects must be
valid blocks for the structure.

Examples:
>> mstr = mstruct([3 1])
returns a matrix structure with two Jordan blocks of sizes 3x3 and
1x1, both with the same but unspecified eigenvalue.

Alternatively, the same structure can be created with
>> mstr = mstruct('fjblock',[3 1])

>> mstr = mstruct({[3 2] [1]},[0 -3])
A matrix structure with one Jordan block of size 3x3 and one of size
2x2 both with the eigenvalue 0, and one Jordan block of size 1x1
with the eigenvalue -3.

Alternatively

38 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

>> mstr = mstruct('fjblock',{[3 2],0},'fjblock',{[1], -3})

In the property-value form, Jordan blocks associated with the same
finite eigenvalue (not equal to NaN) are joined together, i.e.,
>> mstruct('fjblock',{3,4},'fjblock',{[1 2],4})
returns

J(4) = (3 2 1) (6x6)

However, observe that an 'fjblock' associated with a zero eigenvalue
is not the same as a 'zjblock', e.i.,
>> mstruct('fjblock',{3,0},'zjblock',[1 2])
returns

J(0) = (3) (3x3) <- an fjblock
J(0) = (2 1) (3x3) <- two zjblocks

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class mstruct provides the following methods for extracting
information and modifying the canonical structure object.

mstruct Methods:
codim - Compute the codimension of a matrix.
jcf,JNF - Return the matrix in the Jordan Canonical Form.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of valid canonical blocks.
getsgconstraints - Return a list of available StratiGraph constraints.

mstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also fjblock, zjblock, pstruct.

4.5 PSTRUCT

Create a matrix pencil canonical structure object.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 39

pstruct creates a canonical structure object representing a matrix
pencil G-sH in its canonical form.

A pstruct object can consist of the following canonical blocks:
rsblock - Right singular block defined as:

|0 1 0| |1 0 0|
L_n := | . . | - s| . . | n-by-(n+1)

|0 0 1| |0 1 0|

lsblock - Left singular block defined as:
|0 0| |1 0|

L_n^T := |1 . | - s|0 . | (n+1)-by-n
| . 0| | . 1|
|0 1| |0 0|

fjblock - Jordan block associated with a finite eigenvalue mu,
defined as:

|mu 1 0|
J_n(mu) - s*I_n := | mu . | - s*I_n n-by-n

| . 1|
|0 mu|

zjblock - Jordan block associated with the zero eigenvalue (mu=0).

ijblock - Jordan block associated with the infinite eigenvalue,
defined as:

|1 0 0| |0 1 0|
N_n := | 1 . | - s| 0 . | n-by-n

| . 0| | . 1|
|0 1| |0 0|

StructObj = pstruct returns an empty canonical structure object
StructObj representing a matrix pencil G-sH. The canonical structure
information can be specified using one of the three forms 'Size vector
form', Property-value form', or 'Object form', which are explained
below.

Size vector form

StructObj = pstruct(RSBlocks,LSBlocks,FJBlocksv) returns a new
canonical structure object StructObj representing a matrix pencil. The
parameters RSBlocks and LSBlocks define the right and left singular
blocks (associated with the column and row minimal indices),
respectively, of the structure and are given as row-vectors with the
sizes of the blocks. The parameter FJBlocksv defines the Jordan blocks
(associated with the finite elementary divisors) of the structure and
must be either a row-vector with the sizes of Jordan blocks, all
associated with the same eigenvalue, or a cell-array of row-vectors
where each vector contains the sizes of blocks associated with the same

40 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

eigenvalue. By default the associated eigenvalues are set to
unspecified (NaN).

StructObj = pstruct(RSBlocks,LSBlocks,FJBlocksv,Eigv) also sets the
eigenvalues, where Eigv is a row-vector with the values of each
associated eigenvalue corresponding to the row-vectors in FJBlocksv.
Jordan blocks with an unspecified associated eigenvalue are defined by
setting the corresponding eigenvalue in Eigv to NaN.

StructObj = pstruct(RSBlocks,LSBlocks,FJBlocksv,Eigv,IJBlocks) also
sets the sizes of the Jordan blocks with an associated infinite
eigenvalue (associated with the infinite elementary divisors).

Property-value form

StructObj =
pstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...) specifies
the block types BlockName and the sizes StructInt in property-value
form. BlockName is a string specifying the canonical block to be
created, and can be one of:

'rsblock' - Right singular blocks
'lsblock' - Left singular blocks
'fjblock' - Jordan blocks associated with finite eigenvalues
'zjblock' - Jordan blocks associated with the zero eigenvalue
'ijblock' - Jordan blocks associated with the infinite

eigenvalue
Jordan blocks associated with a specified finite eigenvalue are given
as a cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> pstr = pstruct('fjblock',{[3 2],0},'fjblock',{[1], -3})
creates a pencil structure object with one Jordan block of
size 3x3 and one of size 2x2 both with eigenvalue 0, and one
Jordan block of size 1x1 with eigenvalue -3.

pstruct('BlockName1',StructInt1,...,'Notation',Notation) also specifies
the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = pstruct(BlockObj1,BlockObj2,...) creates a structure object
from the listed canonical block objects. The block objects must be
valid blocks for the structure.

StructObj = pstruct(Xstr) converts the structure object Xstr to a
matrix pencil structure object. Xstr can be a canonical structure
object of the type: (skew-)symmetric matrix pencil, matrix, or
state-space system.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 41

Examples:
>> pstr = pstruct([],[2],[3 1],4,[1])
returns a matrix pencil structure with one left singular block of
size 3x2, one Jordan block of size 3x3 and one of size 1x1 both with
eigenvalue 4, and one Jordan block of size 1x1 with an infinite
eigenvalue.

Alternatively, the same structure can be created with
>> pstr = pstruct('lsblock',2,'ijblock',1,'fjblock',{[3 1],4})

>> pstr = pstruct([], [], {[2] [1]}, [1 3], [2])
returns a matrix pencil of the following form:

| J2(1) 0 0 |
| 0 J1(3) 0 |
| 0 0 N2 |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class pstruct provides the following methods for extracting
information and modifying the canonical structure object.

pstruct Methods:
codim - Compute the codimension of a matrix pencil.
kcf - Return the matrix pencil in the Kronecker Canonical Form.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of valid canonical blocks.
getsgconstraints - Return a list of available StratiGraph constraints.

pstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also rsblock, lsblock, fjblock, zjblock, ijblock, spstruct,
sspstruct, mstruct.

Reference page in Doc Center

42 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

doc pstruct

Class methods

codim Compute the codimension of a matrix pencil.

codim(StructObj) determines the codimension of the orbit of the matrix
pencil structure object StructObj. The codimension is determined with
respect to the represented canonical structure not the tangent space.

codim(StructObj,Strata) where the optional argument Strata can be
'orbit' Determines the codimension of the orbit.

Assumes that all eigenvalues are specified. (default)
'bundle' Determines the codimension of the bundle:

codim(bundle) = codim(orbit)
- (number of distinct eigenvalues)

Assumes that all (finite and infinite) eigenvalues
are unspecified.

'semibundle' Determines the codimension of the specified
structure, i.e. the codimension is computed as

codim(bundle) = codim(orbit)
- (number of distinct unspecified eigenvalues)

See also pcodim.

pstruct Create a matrix pencil canonical structure object.

pstruct creates a canonical structure object representing a matrix
pencil G-sH in its canonical form.

A pstruct object can consist of the following canonical blocks:
rsblock - Right singular block defined as:

|0 1 0| |1 0 0|
L_n := | . . | - s| . . | n-by-(n+1)

|0 0 1| |0 1 0|

lsblock - Left singular block defined as:
|0 0| |1 0|

L_n^T := |1 . | - s|0 . | (n+1)-by-n
| . 0| | . 1|
|0 1| |0 0|

fjblock - Jordan block associated with a finite eigenvalue mu,
defined as:

|mu 1 0|
J_n(mu) - s*I_n := | mu . | - s*I_n n-by-n

| . 1|
|0 mu|

zjblock - Jordan block associated with the zero eigenvalue (mu=0).

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 43

ijblock - Jordan block associated with the infinite eigenvalue,
defined as:

|1 0 0| |0 1 0|
N_n := | 1 . | - s| 0 . | n-by-n

| . 0| | . 1|
|0 1| |0 0|

StructObj = pstruct returns an empty canonical structure object
StructObj representing a matrix pencil G-sH. The canonical structure
information can be specified using one of the three forms 'Size vector
form', Property-value form', or 'Object form', which are explained
below.

Size vector form

StructObj = pstruct(RSBlocks,LSBlocks,FJBlocksv) returns a new
canonical structure object StructObj representing a matrix pencil. The
parameters RSBlocks and LSBlocks define the right and left singular
blocks (associated with the column and row minimal indices),
respectively, of the structure and are given as row-vectors with the
sizes of the blocks. The parameter FJBlocksv defines the Jordan blocks
(associated with the finite elementary divisors) of the structure and
must be either a row-vector with the sizes of Jordan blocks, all
associated with the same eigenvalue, or a cell-array of row-vectors
where each vector contains the sizes of blocks associated with the same
eigenvalue. By default the associated eigenvalues are set to
unspecified (NaN).

StructObj = pstruct(RSBlocks,LSBlocks,FJBlocksv,Eigv) also sets the
eigenvalues, where Eigv is a row-vector with the values of each
associated eigenvalue corresponding to the row-vectors in FJBlocksv.
Jordan blocks with an unspecified associated eigenvalue are defined by
setting the corresponding eigenvalue in Eigv to NaN.

StructObj = pstruct(RSBlocks,LSBlocks,FJBlocksv,Eigv,IJBlocks) also
sets the sizes of the Jordan blocks with an associated infinite
eigenvalue (associated with the infinite elementary divisors).

Property-value form

StructObj =
pstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...) specifies
the block types BlockName and the sizes StructInt in property-value
form. BlockName is a string specifying the canonical block to be
created, and can be one of:

'rsblock' - Right singular blocks
'lsblock' - Left singular blocks
'fjblock' - Jordan blocks associated with finite eigenvalues
'zjblock' - Jordan blocks associated with the zero eigenvalue

44 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

'ijblock' - Jordan blocks associated with the infinite
eigenvalue

Jordan blocks associated with a specified finite eigenvalue are given
as a cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> pstr = pstruct('fjblock',{[3 2],0},'fjblock',{[1], -3})
creates a pencil structure object with one Jordan block of
size 3x3 and one of size 2x2 both with eigenvalue 0, and one
Jordan block of size 1x1 with eigenvalue -3.

pstruct('BlockName1',StructInt1,...,'Notation',Notation) also specifies
the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = pstruct(BlockObj1,BlockObj2,...) creates a structure object
from the listed canonical block objects. The block objects must be
valid blocks for the structure.

StructObj = pstruct(Xstr) converts the structure object Xstr to a
matrix pencil structure object. Xstr can be a canonical structure
object of the type: (skew-)symmetric matrix pencil, matrix, or
state-space system.

Examples:
>> pstr = pstruct([],[2],[3 1],4,[1])
returns a matrix pencil structure with one left singular block of
size 3x2, one Jordan block of size 3x3 and one of size 1x1 both with
eigenvalue 4, and one Jordan block of size 1x1 with an infinite
eigenvalue.

Alternatively, the same structure can be created with
>> pstr = pstruct('lsblock',2,'ijblock',1,'fjblock',{[3 1],4})

>> pstr = pstruct([], [], {[2] [1]}, [1 3], [2])
returns a matrix pencil of the following form:

| J2(1) 0 0 |
| 0 J1(3) 0 |
| 0 0 N2 |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 45

The class pstruct provides the following methods for extracting
information and modifying the canonical structure object.

pstruct Methods:
codim - Compute the codimension of a matrix pencil.
kcf - Return the matrix pencil in the Kronecker Canonical Form.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of valid canonical blocks.
getsgconstraints - Return a list of available StratiGraph constraints.

pstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also rsblock, lsblock, fjblock, zjblock, ijblock, spstruct,
sspstruct, mstruct.

4.6 SCMSTRUCT

Create a *congruence matrix structure object.

scmstruct creates a canonical structure object representing a matrix
A in its canonical form under *congruence.

A scmstruct object can consist of the following canonical blocks:
sgblock - *Gamma block associated with a complex parameter mu,

defined as:
|0 ...|
| ... |

*Gamma_n(mu) := mu| 1 1 | n-by-n
| -1 -1 |
|1 1 0|

where |mu| = 1.

swblock - *W block associated with a specified and admissible
eigenvalue mu, defined as:

| 0 I_m|
*W_n(mu) := | | 2n-by-2n

|J_m(mu) 0 |
where |mu| > 1 and J_m(mu) is an m-by-m Jordan
block associated with the eigenvalue mu.

46 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

zjblock - Jordan block associated with the zero eigenvalue,
defined as:

|0 1 0|
J_n(0) := | 0 . | n-by-n

| . 1|
|0 0|

StructObj = scmstruct() returns an empty canonical structure object
StructObj representing a matrix A under *congruence. The canonical
structure information can be specified using one of the three forms
'Size vector form', Property-value form', or 'Object form', which are
explained below.

Size vector form

StructObj = scmstruct(SGBlocksv,Muv,SWBlocksv,Eigv) returns a new
canonical structure object StructObj representing a matrix under
*congruence. The parameter SGBlocksv defines the *Gamma blocks of the
structure and is given as a cell-array of row-vectors where each vector
contains the sizes of blocks associated with the same parameter mu. Muv
is a row-vector with the values of each associated parameters mu
corresponding to the row-vectors in SGBlocksv. The parameter SWBlocksv
defines the *W blocks associated with Jordan blocks of the structure
and must be a cell-array of row-vectors where each vector contains the
sizes of the blocks associated with the same eigenvalue. Eigv is a
row-vector with the values of each associated eigenvalue corresponding
to the row-vectors in SWBlocksv.

StructObj = scmstruct(SGBlocks,Muv,SWBlocksv,Eigv,ZJBlocks) also sets
the sizes of the Jordan blocks with an associated zero eigenvalue.

Property-value form

StructObj =
scmstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...)
specifies the block types BlockName and the sizes StructInt in
property-value form. BlockName is a string specifying the canonical
block to be created, and can be one of:

'sgblock' - *Gamma blocks
'swblock - *W blocks associated with Jordan blocks

(associated with finite eigenvalues)
'zjblock' - Jordan blocks associated with the zero eigenvalue.

*Gamma and *W blocks associated with a specified parameter are
given as a cell-array tuple in the form {StructInt Parameter}.

Example:
>> scmstr = scmstruct('swblock',{[3 2],2},'sgblock',{[1], 1i})
creates a structure object with one *W block of size 6x6 and
one of size 4x4 both with the associated eigenvalue 2, and one

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 47

*Gamma block of size 2x2 with the associated complex parameter
1i.

scmstruct('BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = scmstruct(BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must
be valid blocks for the structure.

Examples:
>> scmstr = scmstruct([],[],[3 1],4,[1])
returns a matrix structure with one *W block of size 6x6 and one of
size 2x2 both with eigenvalue 4, and one Jordan block of size 1x1
with the zero eigenvalue.

Alternatively, the same structure can be created with
>> scmstr = scmstruct('zjblock',1,'swblock',{[3 1],4})

>> scmstr = scmstruct([], [], {[2] [1]}, [5 3], [2])
returns a matrix of the following form:

| SW2(5) 0 0 |
| 0 SW1(3) 0 |
| 0 0 J2(0) |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class scmstruct provides the following methods for extracting
information and modifying the canonical structure object.

scmstruct Methods:
codim - Compute the codimension of a matrix under *congruence.
ccf - Return the matrix in the congruence canonical form.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.

48 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of available canonical blocks.

pstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also sgblock, swblock, zjblock, cmstruct, mstruct.

Reference page in Doc Center
doc scmstruct

Class methods

codim Compute the codimension of a matrix under *congruence.

codim(StructObj) determines the codimension of the *congruence orbit of
the matrix structure object StructObj. The codimension is determined
with respect to the represented canonical structure not the tangent
space.

codim(StructObj,Strata) where the optional argument Strata can be
'orbit' Determines the codimension of the orbit.

Assumes that all eigenvalues are specified. (default)
'bundle' Not implemented!

See also scmcodim.

scmstruct Create a *congruence matrix structure object.

scmstruct creates a canonical structure object representing a matrix
A in its canonical form under *congruence.

A scmstruct object can consist of the following canonical blocks:
sgblock - *Gamma block associated with a complex parameter mu,

defined as:
|0 ...|
| ... |

*Gamma_n(mu) := mu| 1 1 | n-by-n
| -1 -1 |
|1 1 0|

where |mu| = 1.

swblock - *W block associated with a specified and admissible
eigenvalue mu, defined as:

| 0 I_m|
*W_n(mu) := | | 2n-by-2n

|J_m(mu) 0 |
where |mu| > 1 and J_m(mu) is an m-by-m Jordan

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 49

block associated with the eigenvalue mu.

zjblock - Jordan block associated with the zero eigenvalue,
defined as:

|0 1 0|
J_n(0) := | 0 . | n-by-n

| . 1|
|0 0|

StructObj = scmstruct() returns an empty canonical structure object
StructObj representing a matrix A under *congruence. The canonical
structure information can be specified using one of the three forms
'Size vector form', Property-value form', or 'Object form', which are
explained below.

Size vector form

StructObj = scmstruct(SGBlocksv,Muv,SWBlocksv,Eigv) returns a new
canonical structure object StructObj representing a matrix under
*congruence. The parameter SGBlocksv defines the *Gamma blocks of the
structure and is given as a cell-array of row-vectors where each vector
contains the sizes of blocks associated with the same parameter mu. Muv
is a row-vector with the values of each associated parameters mu
corresponding to the row-vectors in SGBlocksv. The parameter SWBlocksv
defines the *W blocks associated with Jordan blocks of the structure
and must be a cell-array of row-vectors where each vector contains the
sizes of the blocks associated with the same eigenvalue. Eigv is a
row-vector with the values of each associated eigenvalue corresponding
to the row-vectors in SWBlocksv.

StructObj = scmstruct(SGBlocks,Muv,SWBlocksv,Eigv,ZJBlocks) also sets
the sizes of the Jordan blocks with an associated zero eigenvalue.

Property-value form

StructObj =
scmstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...)
specifies the block types BlockName and the sizes StructInt in
property-value form. BlockName is a string specifying the canonical
block to be created, and can be one of:

'sgblock' - *Gamma blocks
'swblock - *W blocks associated with Jordan blocks

(associated with finite eigenvalues)
'zjblock' - Jordan blocks associated with the zero eigenvalue.

*Gamma and *W blocks associated with a specified parameter are
given as a cell-array tuple in the form {StructInt Parameter}.

Example:
>> scmstr = scmstruct('swblock',{[3 2],2},'sgblock',{[1], 1i})

50 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

creates a structure object with one *W block of size 6x6 and
one of size 4x4 both with the associated eigenvalue 2, and one
*Gamma block of size 2x2 with the associated complex parameter
1i.

scmstruct('BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = scmstruct(BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must
be valid blocks for the structure.

Examples:
>> scmstr = scmstruct([],[],[3 1],4,[1])
returns a matrix structure with one *W block of size 6x6 and one of
size 2x2 both with eigenvalue 4, and one Jordan block of size 1x1
with the zero eigenvalue.

Alternatively, the same structure can be created with
>> scmstr = scmstruct('zjblock',1,'swblock',{[3 1],4})

>> scmstr = scmstruct([], [], {[2] [1]}, [5 3], [2])
returns a matrix of the following form:

| SW2(5) 0 0 |
| 0 SW1(3) 0 |
| 0 0 J2(0) |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class scmstruct provides the following methods for extracting
information and modifying the canonical structure object.

scmstruct Methods:
codim - Compute the codimension of a matrix under *congruence.
ccf - Return the matrix in the congruence canonical form.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 51

copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of available canonical blocks.

pstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also sgblock, swblock, zjblock, cmstruct, mstruct.

4.7 SPSTRUCT

Create a symmetric matrix pencil structure object.

spstruct creates a canonical structure object representing a symmetric
matrix pencil G-sH in its canonical form.

A spstruct object can consist of the following canonical blocks:
mblock - Singular M block defined as:

| 0 G_n^T| | 0 F_n^T|
M_n := | | - s| | (2n+1)-by-(2n+1)

|G_n 0 | |F_n 0 |
where

|0 1 0| |1 0 0|
G_n := | . . |, and F_n := | . . |

|0 0 1| |0 1 0|

hblock - H block, associated with a finite or unspecified eigenvalues
mu, defined as:

| 0 mu| |0 1|
H_n(mu) := | mu 1 | - s| 1 | n-by-n

| . . | | . |
|mu 1 0 | |1 0|

kblock - K block, associated with the infinite eigenvalue,
defined as:

|0 1| |0 0|
K_n := | 1 | - s| 0 1| n-by-n

| . | | . . |
|1 0| |0 1 0|

StructObj = spstruct() returns an empty canonical structure object
StructObj representing a symmetric matrix pencil G-sH. The canonical
structure information can be specified using one of the three forms
'Size vector form', Property-value form', or 'Object form', which are
explained below.

52 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

Size vector form

StructObj = spstruct(MBlocks,HBlocksv) returns a new canonical
structure object StructObj representing a symmetric matrix pencil G-sH.
The parameter MBlocks defines the singular M blocks of the structure
and is given as a row-vector with the sizes of the blocks. The
parameter HBlocksv defines the H blocks associated with finite or
unspecified eigenvalues and must either be a row-vector with the
indices of blocks, all associated with the same eigenvalue, or a
cell-array of row-vectors where each vector contains the sizes of
blocks associated with the same eigenvalue. By default the associated
eigenvalues are set to unspecified (NaN).

StructObj = spstruct(MBlocks,HBlocksv,Eigv) sets the eigenvalues, where
Eigv is a row-vector with the values of each associated eigenvalue
corresponding to the row-vectors in HBlocksv. The blocks with an
unspecified associated eigenvalue are defined by setting the
corresponding eigenvalue in Eigv to NaN.

StructObj = spstruct(MBlocks,HBlocksv,Eigv,KBlocks) also sets the sizes
of the K blocks associated with the infinite eigenvalue.

Property-value form

StructObj =
spstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...) specifies
the block types BlockName and the sizes StructInt in property-value
form. BlockName is a string specifying the canonical block to be
created, and can be one of:

'mblock' - Singular M blocks.
'hblock' - H blocks associated finite eigenvalues.
'kblock' - K blocks associated the infinite eigenvalue.

H blocks associated with a specified finite eigenvalue are given as a
cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> spstr = spstruct('hblock',{[10 3],[7]},'mblock',[3,2]) creates a
pencil structure object with two H blocks of the sizes 10x10 and 3x3
both with eigenvalue 7, and two singular M block of the sizes 7x7
and 5x5.

spstruct('BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

Object form

StructObj = spstruct(BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 53

be valid blocks for the structure.

Example:
>> spstr = spstruct([2], [3 1], 4, [1])
returns a symmetric matrix pencil structure with one M block of size
5, one H block of size 3 and one of size 1, both with the eigenvalue
4, and one K block of size 1 with the infinite eigenvalue.

Alternatively, the same structure can be created with
>> spstr = spstruct('mblock',2,'kblock',1,'hblock',{[3 1],4})

>> spstr = spstruct([], {[2] [1]}, [1 3], [2])
returns a symmetric matrix pencil of the following form:

| H2(1) 0 0 |
| 0 H1(3) 0 |
| 0 0 K2 |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class spstruct provides the following methods for extracting
information and modifying the canonical structure object.

spstruct Methods:
codim - Compute the codimension of a symmetric matrix pencil.
kcf - Return the symmetric matrix pencil in a Kronecker-like

canonical form (described above).
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of available canonical blocks.

spstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also mblock, hblock, kblock, sspstruct, pstruct.

Reference page in Doc Center
doc spstruct

54 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

Class methods

codim Compute the codimension of a symmetric matrix pencil.

codim(StructObj) determines the codimension of the orbit of the
symmetric matrix pencil structure object StructObj. The codimension is
determined with respect to the represented structure not the tangent
space.

codim(StructObj,Strata) where the optional argument Strata can be
'orbit' Determines the codimension of the orbit.

Assumes that all eigenvalues are specified. (default)
'bundle' Determines the codimension of the bundle.

Assumes that all (finite and infinite) eigenvalues are
unspecified.

'semibundle' Determines the codimension of the specified
structure, i.e., the codimension is computed as
codim(orbit) - (number of distinct unspecified
eigenvalues).

Remark:
codim(bundle) = codim(orbit) - (number of distinct eigenvalues)

See also spcodim.

spstruct Create a symmetric matrix pencil structure object.

spstruct creates a canonical structure object representing a symmetric
matrix pencil G-sH in its canonical form.

A spstruct object can consist of the following canonical blocks:
mblock - Singular M block defined as:

| 0 G_n^T| | 0 F_n^T|
M_n := | | - s| | (2n+1)-by-(2n+1)

|G_n 0 | |F_n 0 |
where

|0 1 0| |1 0 0|
G_n := | . . |, and F_n := | . . |

|0 0 1| |0 1 0|

hblock - H block, associated with a finite or unspecified eigenvalues
mu, defined as:

| 0 mu| |0 1|
H_n(mu) := | mu 1 | - s| 1 | n-by-n

| . . | | . |
|mu 1 0 | |1 0|

kblock - K block, associated with the infinite eigenvalue,
defined as:

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 55

|0 1| |0 0|
K_n := | 1 | - s| 0 1| n-by-n

| . | | . . |
|1 0| |0 1 0|

StructObj = spstruct() returns an empty canonical structure object
StructObj representing a symmetric matrix pencil G-sH. The canonical
structure information can be specified using one of the three forms
'Size vector form', Property-value form', or 'Object form', which are
explained below.

Size vector form

StructObj = spstruct(MBlocks,HBlocksv) returns a new canonical
structure object StructObj representing a symmetric matrix pencil G-sH.
The parameter MBlocks defines the singular M blocks of the structure
and is given as a row-vector with the sizes of the blocks. The
parameter HBlocksv defines the H blocks associated with finite or
unspecified eigenvalues and must either be a row-vector with the
indices of blocks, all associated with the same eigenvalue, or a
cell-array of row-vectors where each vector contains the sizes of
blocks associated with the same eigenvalue. By default the associated
eigenvalues are set to unspecified (NaN).

StructObj = spstruct(MBlocks,HBlocksv,Eigv) sets the eigenvalues, where
Eigv is a row-vector with the values of each associated eigenvalue
corresponding to the row-vectors in HBlocksv. The blocks with an
unspecified associated eigenvalue are defined by setting the
corresponding eigenvalue in Eigv to NaN.

StructObj = spstruct(MBlocks,HBlocksv,Eigv,KBlocks) also sets the sizes
of the K blocks associated with the infinite eigenvalue.

Property-value form

StructObj =
spstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...) specifies
the block types BlockName and the sizes StructInt in property-value
form. BlockName is a string specifying the canonical block to be
created, and can be one of:

'mblock' - Singular M blocks.
'hblock' - H blocks associated finite eigenvalues.
'kblock' - K blocks associated the infinite eigenvalue.

H blocks associated with a specified finite eigenvalue are given as a
cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> spstr = spstruct('hblock',{[10 3],[7]},'mblock',[3,2]) creates a
pencil structure object with two H blocks of the sizes 10x10 and 3x3

56 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

both with eigenvalue 7, and two singular M block of the sizes 7x7
and 5x5.

spstruct('BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

Object form

StructObj = spstruct(BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must
be valid blocks for the structure.

Example:
>> spstr = spstruct([2], [3 1], 4, [1])
returns a symmetric matrix pencil structure with one M block of size
5, one H block of size 3 and one of size 1, both with the eigenvalue
4, and one K block of size 1 with the infinite eigenvalue.

Alternatively, the same structure can be created with
>> spstr = spstruct('mblock',2,'kblock',1,'hblock',{[3 1],4})

>> spstr = spstruct([], {[2] [1]}, [1 3], [2])
returns a symmetric matrix pencil of the following form:

| H2(1) 0 0 |
| 0 H1(3) 0 |
| 0 0 K2 |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class spstruct provides the following methods for extracting
information and modifying the canonical structure object.

spstruct Methods:
codim - Compute the codimension of a symmetric matrix pencil.
kcf - Return the symmetric matrix pencil in a Kronecker-like

canonical form (described above).
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 57

compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of available canonical blocks.

spstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also mblock, hblock, kblock, sspstruct, pstruct.

4.8 SSPSTRUCT

Create a skew-symmetric matrix pencil structure object.

sspstruct creates a canonical structure object representing a
skew-symmetric matrix pencil G-sH in its canonical form.

A sspstruct object can consist of the following canonical blocks:
smblock - Singular SM block defined as:

| 0 G_n| | 0 F_n|
SM_n := | | - s| | (2n+1)-by-(2n+1)

|-G_n^T 0 | |-F_n^T 0 |
where

|0 1 0| |1 0 0|
G_n := | . . | and F_n := | . . |

|0 0 1| |0 1 0|

shblock - SH block associated with a finite or unspecified
eigenvalues mu, defined as:

| 0 J_n(mu)| | 0 I_n|
SH_n := | | - s| | 2n-by-2n

|-J_n(mu)^T 0 | |-I_n 0 |
where J_n(mu) is an n-by-n Jordan block associated with the
eigenvalue mu.

skblock - SK block associated with the infinite eigenvalue,
defined as:

| 0 I_n| | 0 J_n(0)|
SK_n := | | - s| | 2n-by-2n

|-I_n 0 | |-J_n(0)^T 0 |
where J_n(0) is an n-by-n Jordan block associated with the
zero eigenvalue.

StructObj = sspstruct() returns an empty canonical structure object
StructObj representing a skew-symmetric matrix pencil G-sH. The
canonical structure information can be specified using one of the three
forms 'Size vector form', Property-value form', or 'Object form', which
are explained below.

58 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

Size vector form

StructObj = sspstruct(SMBlocks,SHBlocksv) returns a new canonical
structure object StructObj representing a skew-symmetric matrix pencil.
The parameter SMBlocks defines the singular SM blocks of the structure
and is given as a row-vector with the sizes of the blocks. The
parameter SHBlocksv defines the SH blocks associated with the finite or
unspecified eigenvalues and must be either a row-vector with the
indices of blocks, all associated with the same eigenvalue, or a
cell-array of row-vectors where each vector contains the sizes of
blocks associated with the same eigenvalue. By default the associated
eigenvalues are set to unspecified (NaN).

StructObj = sspstruct(SMBlocks,SHBlocksv,Eigv) sets the eigenvalues,
where Eigv is a row-vector with the values of each associated
eigenvalue corresponding to the row-vectors in SHBlocksv. The SH blocks
with an unspecified associated eigenvalue are defined by setting the
corresponding eigenvalue in Eigv to NaN.

StructObj = sspstruct(SMBlocks,SHBlocksv,Eigv,SKBlocks) also sets the
sizes of the SK blocks associated with the infinite eigenvalue.

Property-value form

StructObj =
sspstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...)
specifies the block types BlockName and the sizes StructInt in
property-value form. BlockName is a string specifying the canonical
block to be created, and can be one of:

'smblock' - Singular SM blocks.
'shblock' - SH blocks associated with finite eigenvalues.
'skblock' - SK blocks associated with the infinite eigenvalue.

SH blocks associated with a specified finite eigenvalue are given as a
cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> sspstr = sspstruct('shblock',{[10 3],[7]},'smblock',[3,2])
creates a pencil structure object with two SH blocks of the sizes
20x20 and 6x6 both with the eigenvalue 7, and two singular blocks of
the sizes 7x7 and 5x5.

sspstruct('BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

Object form

StructObj = sspstruct(BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 59

be valid blocks for the structure.

Example:
>> sspstr = sspstruct([2], [3 1], 4, [1])
returns a skew-symmetric matrix pencil structure with one SM
block of size 5, one SH block of size 6 and one of size 2,
both associated with eigenvalue 4, and one SK block of size 2
associated with the infinite eigenvalue.

Alternatively, the same structure can be created with
>> sspstr = sspstruct('smblock',2,'skblock',1,'shblock',{[3 1],4})

>> sspstr = sspstruct([4], {[2] [1]}, [1 3], [2])
returns a skew-symmetric matrix pencil of the following form:

|SM4 0 0 0 |
| 0 SH2(1) 0 0 |
| 0 0 SH1(3) 0 |
| 0 0 0 SK2 |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class sspstruct also provides methods for extracting information
and modifying the canonical structure object.

sspstruct Methods:
codim - Compute the codimension of a skew-symmetric matrix

pencil.
kcf - Return the skew-symmetric matrix pencil in a

Kronecker-like canonical form (described above).
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of available canonical blocks.

sspstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

60 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

See also smblock, shblock, skblock, spstrcut, pstruct.

Reference page in Doc Center
doc sspstruct

Class methods

codim Compute the codimension of a skew-symmetric matrix pencil.

codim(StructObj) determines the codimension of the orbit of the
skew-symmetric matrix pencil structure object StructObj. The
codimension is determined with respect to the represented structure not
the tangent space.

codim(StructObj,Strata) where the optional argument Strata can be
'orbit' Determines the codimension of the orbit.

Assumes that all eigenvalues are specified. (default)
'bundle' Determines the codimension of the bundle.

Assumes that all (finite and infinite) eigenvalues are
unspecified.

'semibundle' Determines the codimension of the specified
structure, i.e., the codimension is computed as
codim(orbit) - (number of distinct unspecified
eigenvalues).

Remark:
codim(bundle) = codim(orbit) - (number of distinct eigenvalues)

See also sspcodim.

sspstruct Create a skew-symmetric matrix pencil structure object.

sspstruct creates a canonical structure object representing a
skew-symmetric matrix pencil G-sH in its canonical form.

A sspstruct object can consist of the following canonical blocks:
smblock - Singular SM block defined as:

| 0 G_n| | 0 F_n|
SM_n := | | - s| | (2n+1)-by-(2n+1)

|-G_n^T 0 | |-F_n^T 0 |
where

|0 1 0| |1 0 0|
G_n := | . . | and F_n := | . . |

|0 0 1| |0 1 0|

shblock - SH block associated with a finite or unspecified
eigenvalues mu, defined as:

| 0 J_n(mu)| | 0 I_n|
SH_n := | | - s| | 2n-by-2n

|-J_n(mu)^T 0 | |-I_n 0 |

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 61

where J_n(mu) is an n-by-n Jordan block associated with the
eigenvalue mu.

skblock - SK block associated with the infinite eigenvalue,
defined as:

| 0 I_n| | 0 J_n(0)|
SK_n := | | - s| | 2n-by-2n

|-I_n 0 | |-J_n(0)^T 0 |
where J_n(0) is an n-by-n Jordan block associated with the
zero eigenvalue.

StructObj = sspstruct() returns an empty canonical structure object
StructObj representing a skew-symmetric matrix pencil G-sH. The
canonical structure information can be specified using one of the three
forms 'Size vector form', Property-value form', or 'Object form', which
are explained below.

Size vector form

StructObj = sspstruct(SMBlocks,SHBlocksv) returns a new canonical
structure object StructObj representing a skew-symmetric matrix pencil.
The parameter SMBlocks defines the singular SM blocks of the structure
and is given as a row-vector with the sizes of the blocks. The
parameter SHBlocksv defines the SH blocks associated with the finite or
unspecified eigenvalues and must be either a row-vector with the
indices of blocks, all associated with the same eigenvalue, or a
cell-array of row-vectors where each vector contains the sizes of
blocks associated with the same eigenvalue. By default the associated
eigenvalues are set to unspecified (NaN).

StructObj = sspstruct(SMBlocks,SHBlocksv,Eigv) sets the eigenvalues,
where Eigv is a row-vector with the values of each associated
eigenvalue corresponding to the row-vectors in SHBlocksv. The SH blocks
with an unspecified associated eigenvalue are defined by setting the
corresponding eigenvalue in Eigv to NaN.

StructObj = sspstruct(SMBlocks,SHBlocksv,Eigv,SKBlocks) also sets the
sizes of the SK blocks associated with the infinite eigenvalue.

Property-value form

StructObj =
sspstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...)
specifies the block types BlockName and the sizes StructInt in
property-value form. BlockName is a string specifying the canonical
block to be created, and can be one of:

'smblock' - Singular SM blocks.
'shblock' - SH blocks associated with finite eigenvalues.
'skblock' - SK blocks associated with the infinite eigenvalue.

SH blocks associated with a specified finite eigenvalue are given as a

62 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> sspstr = sspstruct('shblock',{[10 3],[7]},'smblock',[3,2])
creates a pencil structure object with two SH blocks of the sizes
20x20 and 6x6 both with the eigenvalue 7, and two singular blocks of
the sizes 7x7 and 5x5.

sspstruct('BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

Object form

StructObj = sspstruct(BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must
be valid blocks for the structure.

Example:
>> sspstr = sspstruct([2], [3 1], 4, [1])
returns a skew-symmetric matrix pencil structure with one SM
block of size 5, one SH block of size 6 and one of size 2,
both associated with eigenvalue 4, and one SK block of size 2
associated with the infinite eigenvalue.

Alternatively, the same structure can be created with
>> sspstr = sspstruct('smblock',2,'skblock',1,'shblock',{[3 1],4})

>> sspstr = sspstruct([4], {[2] [1]}, [1 3], [2])
returns a skew-symmetric matrix pencil of the following form:

|SM4 0 0 0 |
| 0 SH2(1) 0 0 |
| 0 0 SH1(3) 0 |
| 0 0 0 SK2 |

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class sspstruct also provides methods for extracting information
and modifying the canonical structure object.

sspstruct Methods:
codim - Compute the codimension of a skew-symmetric matrix

pencil.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 63

kcf - Return the skew-symmetric matrix pencil in a
Kronecker-like canonical form (described above).

size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of available canonical blocks.

sspstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also smblock, shblock, skblock, spstrcut, pstruct.

4.9 SSSTRUCT

Create a state-space system structure object.

ssstruct creates a canonical structure object representing the system
pencil S-sT = [A B; C D] - s[I 0; 0 0] in its canonical form. The
system pencil S-sT is associated with the continuous-time state-space
model

dx/dt = Ax(t) + Bu(t),
y = Cx(t) + Du(t).

An ssstruct object can consist of the following canonical blocks:
rsblock - Right singular block defined as:

|0 1 0| |1 0 0|
L_n := | . . | - s| . . | n-by-(n+1)

|0 0 1| |0 1 0|

lsblock - Left singular block defined as:
|0 0| |1 0|

L_n^T := |1 . | - s|0 . | (n+1)-by-n
| . 0| | . 1|
|0 1| |0 0|

fjblock - Jordan block associated with a finite eigenvalue mu,
defined as:

|mu 1 0|
J_n(mu) - s*I_n := | mu . | - s*I_n n-by-n

| . 1|
|0 mu|

zjblock - Jordan block associated with the zero eigenvalue (mu=0).

64 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

ijblock - Jordan block associated with the infinite eigenvalue,
defined as::

|1 0 0| |0 1 0|
N_n := | 1 . | - s| 0 . | n-by-n

| . 0| | . 1|
|0 1| |0 0|

StructObj = ssstruct() returns an empty canonical structure
object StructObj representing the system pencil

S-sT = [A B; C D] - s[I 0; 0 0],
associated with the continuous-time state-space model

dx/dt = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).

The canonical structure information can be specified using one of the
three forms 'Size vector form', Property-value form', or 'Object form',
which are explained below.

Size vector form

StructObj = ssstruct(RSBlocks,LSBlocks,FJBlocksv) returns a new
canonical structure object StructObj representing a system pencil. The
parameter RSBlocks and LSBlocks define the right and left singular
blocks (associated with the column and row minimal indices),
respectively, of the structure and is given as row-vectors with the
sizes of the blocks. The parameter FJBlocksv defines the Jordan blocks
(associated with the finite elementary divisors) of the structure and
must be either a row-vector with the sizes of Jordan blocks, all
associated with the same eigenvalue, or a cell-array of row-vectors,
each containing the sizes of blocks associated with the same
eigenvalue. By default the associated eigenvalues are set to
unspecified (NaN).

StructObj = ssstruct(RSBlocks,LSBlocks,FJBlocksv,Eigv) also sets the
eigenvalues, where Eigv is a row-vector with the values of each
associated eigenvalue corresponding to the row-vectors in FJBlocksv.
Jordan blocks with an unspecified associated eigenvalue are defined by
setting the corresponding eigenvalue in Eigv to NaN.

StructObj = ssstruct(RSBlocks,LSBlocks,FJBlocksv,Eigv,IJBlocks) also
sets the sizes of the Jordan blocks with an associated infinite
eigenvalue (associated with the infinite elementary divisors).

Property-value form

StructObj =
ssstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...) specifies
the block types BlockName and the sizes StructInt in property-value
form. BlockName is a string specifying the canonical block to be
created, and can be one of:

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 65

'rsblock' - Right singular blocks
'lsblock' - Left singular blocks
'fjblock' - Jordan blocks associated with finite eigenvalues
'zjblock' - Jordan blocks associated with the zero eigenvalue
'ijblock' - Jordan blocks associated with the infinite

eigenvalue
Jordan blocks associated with a specified finite eigenvalue are given
as a cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> ssstr = ssstruct('fjblock',{[3 2],0},'fjblock',{[1], -3})
creates a state-space structure object with one Jordan block of
size 3x3 and one of size 2x2 both with eigenvalue 0, and one Jordan
block of size 1x1 with eigenvalue -3.

ssstruct('BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = ssstruct(BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must
be valid blocks for the structure.

StructObj = ssstruct(Pstr) converts the matrix pencil structure object
Pstr to a system pencil structure object with the same canonical
structure information.

Examples:
>> ssstr = ssstruct([2],[0 1],[2],4)
returns a state-space structure with one right singular block of
size 2x3, two left singular blocks of sizes 1x0 and 2x1, and one
Jordan block of size 2x2 with eigenvalue 4.

Alternatively, the same structure can be created with
>> ssstr = ...

ssstruct('rsblock',2,'lsblock',[0 1],'fjblock',{2,4})

>> ssstr = ssstruct('rsblock',3,'fjblock',{3,-1})
returns a controllability pair structure with one right singular
block of size 3x4 and one Jordan block of size 3x3 with eigenvalue
-1.

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

66 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

The class ssstruct provides the following methods for extracting
information and modifying the canonical structure object.

ssstruct Methods:
codim - Compute the codimension of a state-space model.
oftype - State-space model type.
ctrbpair - Controllability pair.
obsvpair - Observability pair.
bcf - Return the system pencil in the Brunovsky Canonical Form.
kcf - Return the matrix pencil in the Kronecker Canonical Form.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.
copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of valid canonical blocks.
getsgconstraints - Return a list of available StratiGraph constraints.

ssstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also rsblock, lsblock, fjblock, zjblock, ijblock.

Reference page in Doc Center
doc ssstruct

Class methods

codim Compute the codimension of a state-space system pencil.

codim(StructObj) determines the codimension of the orbit of the
state-space structure object StructObj. The codimension is determined
with respect to the represented canonical structure not the tangent
space.

codim(StructObj,Strata) where the optional argument Strata can be
'orbit' Determines the codimension of the orbit.

Assumes that all eigenvalues are specified. (default)
'bundle' Determines the codimension of the bundle:

codim(bundle) = codim(orbit)
- (number of distinct finite eigenvalues)

Assumes that all finite eigenvalues are unspecified.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 67

Infinite eigenvalues are still treated as specified.
'semibundle' Determines the codimension of the specified

structure, i.e. the codimension is computed as
codim(bundle) = codim(orbit)
- (number of distinct unspecified eigenvalues)

See also s2codim.

obsvpair Observability pair.

PairObj = obsvpair(StructObj) returns a new state-space system
structure object PairObj representing the observability pair (A,C),
i.e., the matrices B and D in the state-space model are assumed to be
empty matrices.

[A,C] = obsvpair(StructObj) returns the observability pair (A,C)
associated with the particular system

dx/dt = Ax(t),
y(t) = Cx(t),

of the state-space model represented by the structure object StructObj.
The matrix pair (A,C) is returned in Brunovsky canonical form (bcf).

note! The new canonical form is determined exactly from the bcf, i.e.,
the pair (A,C) is assumed to be in bcf and no computational routines
are called.

See also ctrbpair.

ctrbpair Controllability pair.

PairObj = ctrbpair(StructObj) returns a new state-space system
structure object PairObj representing the controllability pair (A,B),
i.e., the matrices C and D in the state-space model are assumed to be
empty matrices.

[A,B] = ctrbpair(StructObj) returns the controllability pair (A,B)
associated with the particular system

dx/dt = Ax(t) + Bu(t),
of the state-space model represented by the structure object StructObj.
The matrix pair (A,B) is returned in Brunovsky canonical form (bcf).

note! The new canonical form is determined exactly from the bcf, i.e.,
the pair (A,B) is assumed to be in bcf and no computational routines
are called.

See also obsvpair.

oftype State-space model type.

Type = oftype(StructObj) returns a string Type indicating the
non-empty matrices (A, B, C, and D) in the state-space model

68 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

dx/dt = Ax(t) + Bu(t), (1)
y(t) = Cx(t) + Du(t).

The type is determined from the canonical structure information.

Type can be:
'a' - StructObj represents a state-space model with only a state

matrix A. The state-space structure consists only of Jordan
blocks with finite eigenvalues (associated with the finite
elementary divisors).

'ab' - StructObj represents a controllability pair (A,B) associated
with the particular system

dx/dt = Ax(t) + Bu(t),
of (1). The state-space structure consists only of right
singular blocks (associated with the column minimal indices)
and Jordan blocks with finite eigenvalues (associated with
the finite elementary divisors).

'ac' - StructObj represents an observability pair (A,C) associated
with the particular system

dx/dt = Ax(t),
y(t) = Cx(t),

of (1). The state-space structure consists only of left
singular blocks (associated with the row minimal indices)
and Jordan blocks with finite eigenvalues (associated with
the finite elementary divisors).

'abc' - StructObj represents a state-space model without any
feed-forward, i.e., D is a zero matrix. The state-space
structure do not have any Jordan blocks assosiated with the
infinite eigenvalue of size 1-by-1 (no infinite elementary
divisors of order 1).

'abcd' - StructObj represents the full state-space model in (1).

'' (empty string) - StructObj is an empty object.

size Total size of the represented structure.

D = size(StructObj) returns a two-element row vector D = [M, N]
containing the number of rows M and columns N of the system pencil
structure, i.e., the sum of the sizes of all the canonical blocks.

[M,N] = size(StructObj) returns the number of rows and columns in
separate output variables.

size(StructObj,Dim) returns the length of the dimension specified by
the scalar Dim. For example, size(StructObj,1) returns the number of
rows.

[N,M,P] = size(StructObj) returns the sizes of the matrices in the

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 69

state-space model. The returned sizes are the sizes of the N-by-N
matrix A (number of states N), the N-by-M matrix B (number of inputs
M), and the P-by-N matrix C (number of outputs P).

ssstruct Create a state-space system structure object.

ssstruct creates a canonical structure object representing the system
pencil S-sT = [A B; C D] - s[I 0; 0 0] in its canonical form. The
system pencil S-sT is associated with the continuous-time state-space
model

dx/dt = Ax(t) + Bu(t),
y = Cx(t) + Du(t).

An ssstruct object can consist of the following canonical blocks:
rsblock - Right singular block defined as:

|0 1 0| |1 0 0|
L_n := | . . | - s| . . | n-by-(n+1)

|0 0 1| |0 1 0|

lsblock - Left singular block defined as:
|0 0| |1 0|

L_n^T := |1 . | - s|0 . | (n+1)-by-n
| . 0| | . 1|
|0 1| |0 0|

fjblock - Jordan block associated with a finite eigenvalue mu,
defined as:

|mu 1 0|
J_n(mu) - s*I_n := | mu . | - s*I_n n-by-n

| . 1|
|0 mu|

zjblock - Jordan block associated with the zero eigenvalue (mu=0).

ijblock - Jordan block associated with the infinite eigenvalue,
defined as::

|1 0 0| |0 1 0|
N_n := | 1 . | - s| 0 . | n-by-n

| . 0| | . 1|
|0 1| |0 0|

StructObj = ssstruct() returns an empty canonical structure
object StructObj representing the system pencil

S-sT = [A B; C D] - s[I 0; 0 0],
associated with the continuous-time state-space model

dx/dt = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).

The canonical structure information can be specified using one of the
three forms 'Size vector form', Property-value form', or 'Object form',
which are explained below.

70 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

Size vector form

StructObj = ssstruct(RSBlocks,LSBlocks,FJBlocksv) returns a new
canonical structure object StructObj representing a system pencil. The
parameter RSBlocks and LSBlocks define the right and left singular
blocks (associated with the column and row minimal indices),
respectively, of the structure and is given as row-vectors with the
sizes of the blocks. The parameter FJBlocksv defines the Jordan blocks
(associated with the finite elementary divisors) of the structure and
must be either a row-vector with the sizes of Jordan blocks, all
associated with the same eigenvalue, or a cell-array of row-vectors,
each containing the sizes of blocks associated with the same
eigenvalue. By default the associated eigenvalues are set to
unspecified (NaN).

StructObj = ssstruct(RSBlocks,LSBlocks,FJBlocksv,Eigv) also sets the
eigenvalues, where Eigv is a row-vector with the values of each
associated eigenvalue corresponding to the row-vectors in FJBlocksv.
Jordan blocks with an unspecified associated eigenvalue are defined by
setting the corresponding eigenvalue in Eigv to NaN.

StructObj = ssstruct(RSBlocks,LSBlocks,FJBlocksv,Eigv,IJBlocks) also
sets the sizes of the Jordan blocks with an associated infinite
eigenvalue (associated with the infinite elementary divisors).

Property-value form

StructObj =
ssstruct('BlockName1',StructInt1,'BlockName2',StructInt2,...) specifies
the block types BlockName and the sizes StructInt in property-value
form. BlockName is a string specifying the canonical block to be
created, and can be one of:

'rsblock' - Right singular blocks
'lsblock' - Left singular blocks
'fjblock' - Jordan blocks associated with finite eigenvalues
'zjblock' - Jordan blocks associated with the zero eigenvalue
'ijblock' - Jordan blocks associated with the infinite

eigenvalue
Jordan blocks associated with a specified finite eigenvalue are given
as a cell-array tuple in the form {StructInt Eigenvalue}.

Example:
>> ssstr = ssstruct('fjblock',{[3 2],0},'fjblock',{[1], -3})
creates a state-space structure object with one Jordan block of
size 3x3 and one of size 2x2 both with eigenvalue 0, and one Jordan
block of size 1x1 with eigenvalue -3.

ssstruct('BlockName1',StructInt1,...,'Notation',Notation) also
specifies the notation used for StructInt. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.

MCS Toolbox, v0.7 4 CANONICAL STRUCTURE OBJECTS | 71

'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

Object form

StructObj = ssstruct(BlockObj1,BlockObj2,...) creates a structure
object from the listed canonical block objects. The block objects must
be valid blocks for the structure.

StructObj = ssstruct(Pstr) converts the matrix pencil structure object
Pstr to a system pencil structure object with the same canonical
structure information.

Examples:
>> ssstr = ssstruct([2],[0 1],[2],4)
returns a state-space structure with one right singular block of
size 2x3, two left singular blocks of sizes 1x0 and 2x1, and one
Jordan block of size 2x2 with eigenvalue 4.

Alternatively, the same structure can be created with
>> ssstr = ...

ssstruct('rsblock',2,'lsblock',[0 1],'fjblock',{2,4})

>> ssstr = ssstruct('rsblock',3,'fjblock',{3,-1})
returns a controllability pair structure with one right singular
block of size 3x4 and one Jordan block of size 3x3 with eigenvalue
-1.

Subscripting

To access the canonical blocks in the structure object it is possible
to use subscipts. See subsref for detail and examples. If more control
is needed of what should be retrieved, use the method get instead.

The class ssstruct provides the following methods for extracting
information and modifying the canonical structure object.

ssstruct Methods:
codim - Compute the codimension of a state-space model.
oftype - State-space model type.
ctrbpair - Controllability pair.
obsvpair - Observability pair.
bcf - Return the system pencil in the Brunovsky Canonical Form.
kcf - Return the matrix pencil in the Kronecker Canonical Form.
size - Total size of the represented structure.
numblk - Number of canonical block objects.
isempty - True for empty canonical structure.
char - Convert a structure object to a string.
exist - Check if a canonical block of a specified type

already exist.

72 | 4 CANONICAL STRUCTURE OBJECTS User’s manual

copy - Return a copy of the structure object.
compare - Compare two canonical structure objects.
set - Set the canonical structure information (not implemented).
get - Get the canonical structure information.
getvalidblocks - Return a list of valid canonical blocks.
getsgconstraints - Return a list of available StratiGraph constraints.

ssstruct Operators:
==, ∼= (eq, ne) - Check if two structure objects are equal.
(), {} (subsref) - Index reference for canonical structure objects.

See also rsblock, lsblock, fjblock, zjblock, ijblock.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 73

5 Canonical Block Objects

5.1 MCSBLOCK

Abstract class for generic canonical blocks.

mcsblock provides a template and generic methods for canonical block
objects.

mcsblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

mcsblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also mcsstruct.

Reference page in Doc Center
doc mcsblock

Class methods

weyr Weyr characteristics.

weyr(BlockObj) returns the canonical block sizes represented in Weyr
characteristics.

See also sizes, segre.

segre Segre characteristics.

segre(BlockObj) returns the canonical block sizes represented in Segre
characteristics (non-increasing order).

See also sizes, weyr.

sizes Canonical block sizes.

74 | 5 CANONICAL BLOCK OBJECTS User’s manual

sizes(BlockObj) returns the canonical block sizes unordered (in the
same order as created).

See also segre, weyr.

get Get the canonical structure information.

Blockv = get(BlockObj,'StructInt',Notation) or
Blockv = get(BlockObj,Notation) returns the structure integer partition
Blockv. The optional Notation specify in which notation the structure
integer partition Blockv is represented in. Valid values of Notation
are 'sizes' (default), 'segre', or 'weyr'.

See also set.

set Set the canonical structure information.

set(BlockObj,'StructInt',Blockv) or
set(BlockObj,'StructInt',Blockv,Notation) sets the structure integer
partition to Blockv. Notation specify in which notation the structure
integer partition Blockv is represented in. Valid values of Notation
are 'sizes' (default), 'segre', or 'weyr'.

set(BlockObj,Blockv,Notation) is a compact form which sets the
canonical block structure to the structure integer partition Blockv in
notation Notation, where Notation can be omitted.

See also get.

block2cell Convert a block object to a cell array of strings.

Out = block2cell(BlockObj,Format) returns the canonical structure
information as strings in the cell array Out where Format can be
'block', 'segre', 'segrec', 'weyr', or 'sizes'. If Format is 'block'
(for canonical block), Out is N-by-1, where N is the number of
canonical blocks and Out{k} returns the canonical block structure, k =
1,...,N. Otherwise, Out is 1-by-3, where Out{1,1} returns the label,
Out{1,2} the structure integer partition (as Segre-type, Weyr-type, or
as unordered sizes), and Out{1,3} the total dimension.

If Format is 'segrec' a compact variant of 'segre' is used where
multiple blocks of the same size is written as n*..., where n is the
number of blocks.

See also char.

disp Display a canonical block object.

disp(BlockObj) is called for the canonical block object BlockObj when
the semicolon is not used to terminate a statement. Returns the
canonical form represented as a string.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 75

char Convert a block object to a string.

S = char(BlockObj) returns the canonical structure information of the
block object BlockObj as a string in canonical block notation.

See also mcsstruct/char.

compare Compare two block objects.

C = compare(B1,B2) compares the two block objects B1 and B2 of the same
class, and returns 0 if equal, 1 if B1 > B2, and -1 if B1 < B2. The
comparison is done by comparing the sizes of the canonical blocks.
First the largest block from each object are compared then the second
largest until one is larger than the other or no more blocks exist.
Any parameters are ignored.

C = compare(B1,B2,'weyr') uses the Weyr characteristics resulting in
that the comparison is done by comparing the number of blocks. First
the number of all blocks are compared then the number of second
smallest and larger blocks until one quantity is larger than the other.

[C2, D] = compare(B1,B2,Tol) or
[C2, D] = compare(B1,B2,Tol,'weyr') returns the row vector C2 = [C,P],
where C is the result from above and P is the result from comparing the
parameters (eigenvalues). It uses the tolerance Tol for comparing the
parameters. Parameter p1 from B1 is assumed to be equal to p2 from B2
if abs(p1-p2) <= Tol, larger if p1 > p2, otherwise smaller. For blocks
with no parameter P is always 0. The optional D returns the difference
abs(p1-p2) between the two parameters, or NaN if the blocks have no
parameter.

C = compare(B1,B2,'size') only compares the total sizes of the block
objects. Returns 0 if equal, 1 if S1 > S2, and -1 if S1 < S2.

See also eq.

isregular True for regular canonical block object.

isregular(BlockObj) returns logical 1 (true) if BlockObj represents a
regular canonical block and logical 0 (false) otherwise.

issingular True for singular canonical block object.

issingular(BlockObj) returns logical 1 (true) if BlockObj represents a
singular canonical block and logical 0 (false) otherwise.

isempty True for empty canonical block object.

isempty(BlockObj) returns logical 1 (true) if BlockObj is an empty
canonical block object and logical 0 (false) otherwise. An empty block
object has an empty structure integer partition.

76 | 5 CANONICAL BLOCK OBJECTS User’s manual

numblk Number of canonical blocks.

N = numblk(BlockObj) returns the number of canonical blocks in the
block object BlockObj.

See also size, mcsstruct/numblk.

size Total size of the represented canonical blocks.

D = size(BlockObj) returns a two-element row vector D = [M, N]
containing the number of rows and columns of the canonical block object
BlockObj, i.e., the sum of the sizes of the represented canonical
blocks.

[M,N] = size(BlockObj) returns the number of rows and columns in
separate output variables.

size(BlockObj,Dim) returns the length of the dimension specified by the
scalar Dim. For example, size(X,1) returns the number of rows.

ne (∼=) Not equal relation between two block objects.

Block1 ∼= Block2 checks if the two canonical block objects are not
equal.

See also eq, compare.

eq (==) Equal relation between two block objects.

Block1 == Block2 checks if the two canonical block objects are equal.

See also ne, compare.

5.2 FJBLOCK

Create a Jordan block object.

fjblock creates a canonical block object representing a Jordan block
structure associated with a finite or unspecified eigenvalue.

Each n-by-n Jordan block associated with a finite eigenvalue mu is
defined as:

|mu 1 0|
J_n(mu) := | mu . |

| . 1|
|0 mu|

for matrices and as J_n(mu) - s*I_n for matrix pencils.

BlockObj = fjblock(JordanBlocks, Ev) returns a new canonical block
object BlockObj representing a structure of Jordan blocks. The Jordan

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 77

blocks are defined by the exponents (h_n,, h_1) of the finite
elementary divisors. The vector JordanBlocks = [h_n, ..., h_1] is the
structure integer partition representing the (unordered) sizes
(h_k)-by-(h_k) of the blocks and Ev is the associated eigenvalue. Ev
can be a complex number or NaN (unspecified eigenvalue). If Ev is
omitted, the eigenvalue is assumed to be unspecified.

BlockObj = fjblock(JordanBlocks, Ev, Notation) also specifies the
notation used for JordanBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = fjblock returns an empty Jordan block object.

The class fjblock provides the following methods for extracting
information and modifying the canonical block object.

fjblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
jcf - Jordan canonical form of the block object.
kcf - Kronecker canonical form of the block object.
bcf - Brunovsky canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

fjblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also ijblock, zjblock, mstruct, pstruct, ssstruct.

Reference page in Doc Center
doc fjblock

Class methods

kcf Kronecker canonical form of the block object.

[G,H] = kcf(BlockObj) returns the square matrix pencil G-sH in

78 | 5 CANONICAL BLOCK OBJECTS User’s manual

Kronecker Canonical Form (kcf) specified by the Jordan block object
BlockObj. The matrix H is an identity matrix and G is block-diagonal
where each block is in Jordan Canonical Form (jcf).

J = kcf(BlockObj) returns the matrix J in jcf.

... = kcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also jcf, ijblock/kcf, pstruct/kcf.

bcf Brunovsky canonical form of the block object.

A = bcf(BlockObj) returns the matrix A of the system pencil S-sT = [A
B; C D] - s[I 0; 0 0] in Brunovsky Canonical Form (bcf) specified by
the Jordan block object BlockObj (the matrix A is in Jordan canonical
form). Consequently, the pencil S-sT consists only of Jordan blocks
associated with a finite eigenvalue (J blocks).

[A,B,C,D] = bcf(BlockObj) also returns the empty matrices B, C and D of
the system pencil S-sT.

... = bcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also kcf, jcf.

jcf Jordan canonical form of the block object.

J = jcf(BlockObj) returns the matrix J in Jordan Canonical Form (jcf)
specified by the Jordan block object BlockObj.

... = jcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also kcf, mstruct/jcf.

fjblock Create a Jordan block object.

fjblock creates a canonical block object representing a Jordan block
structure associated with a finite or unspecified eigenvalue.

Each n-by-n Jordan block associated with a finite eigenvalue mu is
defined as:

|mu 1 0|
J_n(mu) := | mu . |

| . 1|
|0 mu|

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 79

for matrices and as J_n(mu) - s*I_n for matrix pencils.

BlockObj = fjblock(JordanBlocks, Ev) returns a new canonical block
object BlockObj representing a structure of Jordan blocks. The Jordan
blocks are defined by the exponents (h_n,, h_1) of the finite
elementary divisors. The vector JordanBlocks = [h_n, ..., h_1] is the
structure integer partition representing the (unordered) sizes
(h_k)-by-(h_k) of the blocks and Ev is the associated eigenvalue. Ev
can be a complex number or NaN (unspecified eigenvalue). If Ev is
omitted, the eigenvalue is assumed to be unspecified.

BlockObj = fjblock(JordanBlocks, Ev, Notation) also specifies the
notation used for JordanBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = fjblock returns an empty Jordan block object.

The class fjblock provides the following methods for extracting
information and modifying the canonical block object.

fjblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
jcf - Jordan canonical form of the block object.
kcf - Kronecker canonical form of the block object.
bcf - Brunovsky canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

fjblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also ijblock, zjblock, mstruct, pstruct, ssstruct.

5.3 GBLOCK

Create a Gamma block object.

80 | 5 CANONICAL BLOCK OBJECTS User’s manual

gblock creates a canonical block object representing a Gamma block
structure.

Each n-by-n Gamma block is defined as:
|0 ...|
| ... |

Gamma_n := | 1 1 |
| -1 -1 |
|1 1 0|

BlockObj = gblock(GBlocks) returns a new canonical block object
BlockObj representing a structure of Gamma blocks. The vector GBlocks =
[epsilon_n, ..., epsilon_1] is the structure integer partition
representing the (unordered) sizes (epsilon_k)-by-(epsilon_k) of the
blocks.

BlockObj = gblock(GBlocks, Notation) also specifies the notation used
for GBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = gblock returns an empty Gamma block object.

The class gblock provides the following methods for extracting
information and modifying the canonical block object.

gblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
ccf - Congruence canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

gblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also sgblock, cmstruct.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 81

Reference page in Doc Center
doc gblock

Class methods

ccf Congruence canonical form of the block object.

H = ccf(BlockObj) returns the matrix H in Congruence Canonical Form
(ccf) specified by the Gamma block object BlockObj. The matrix H only
consists of Gamma blocks.

... = ccf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also cmstruct/ccf.

gblock Create a Gamma block object.

gblock creates a canonical block object representing a Gamma block
structure.

Each n-by-n Gamma block is defined as:
|0 ...|
| ... |

Gamma_n := | 1 1 |
| -1 -1 |
|1 1 0|

BlockObj = gblock(GBlocks) returns a new canonical block object
BlockObj representing a structure of Gamma blocks. The vector GBlocks =
[epsilon_n, ..., epsilon_1] is the structure integer partition
representing the (unordered) sizes (epsilon_k)-by-(epsilon_k) of the
blocks.

BlockObj = gblock(GBlocks, Notation) also specifies the notation used
for GBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = gblock returns an empty Gamma block object.

The class gblock provides the following methods for extracting
information and modifying the canonical block object.

gblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.

82 | 5 CANONICAL BLOCK OBJECTS User’s manual

copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
ccf - Congruence canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

gblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also sgblock, cmstruct.

5.4 HBLOCK

Create a H block object.

hblock creates a canonical block object representing a symmetric H
block structure associated with a finite or unspecified eigenvalue.

Each n-by-n symmetric H block associated with an eigenvalue mu is
defined as:

| 0 mu| |0 1|
H_n(mu) := | mu 1 | - s| 1 |

| . . | | . |
|mu 1 0 | |1 0|

BlockObj = hblock(HBlocks, Ev) returns a new canonical block
object BlockObj representing a structure of symmetric H blocks
("anti-diagonal" Jordan blocks) associated with a finite or
unspecified eigenvalue. The vector HBlocks = [h_n, ..., h_1] is
the structure integer partition representing the (unordered)
sizes (h_k)-by-(h_k) of the blocks and Ev is the associated
eigenvalue. Ev can be a complex number or NaN (unspecified
eigenvalue). If Ev is omitted, the eigenvalue is assumed to be
unspecified.

BlockObj = hblock(HBlocks, Ev, Notation) also specifies the
notation used for HBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = hblock returns an empty H block object.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 83

The class hblock provides the following methods for extracting
information and modifying the canonical block object.

hblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

hblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also shblock, spstruct.

Reference page in Doc Center
doc hblock

Class methods

kcf Kronecker-like canonical form of the block object.

[G,H] = kcf(BlockObj) returns the square symmetric matrix pencil G-sH
in Kronecker-like canonical form specified by the H block object
BlockObj.

... = kcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also spstruct/kcf.

hblock Create a H block object.

hblock creates a canonical block object representing a symmetric H
block structure associated with a finite or unspecified eigenvalue.

Each n-by-n symmetric H block associated with an eigenvalue mu is
defined as:

84 | 5 CANONICAL BLOCK OBJECTS User’s manual

| 0 mu| |0 1|
H_n(mu) := | mu 1 | - s| 1 |

| . . | | . |
|mu 1 0 | |1 0|

BlockObj = hblock(HBlocks, Ev) returns a new canonical block
object BlockObj representing a structure of symmetric H blocks
("anti-diagonal" Jordan blocks) associated with a finite or
unspecified eigenvalue. The vector HBlocks = [h_n, ..., h_1] is
the structure integer partition representing the (unordered)
sizes (h_k)-by-(h_k) of the blocks and Ev is the associated
eigenvalue. Ev can be a complex number or NaN (unspecified
eigenvalue). If Ev is omitted, the eigenvalue is assumed to be
unspecified.

BlockObj = hblock(HBlocks, Ev, Notation) also specifies the
notation used for HBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = hblock returns an empty H block object.

The class hblock provides the following methods for extracting
information and modifying the canonical block object.

hblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

hblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also shblock, spstruct.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 85

5.5 IJBLOCK

Create a Jordan block object associated with the infinite eigenvalue.

ijblock creates a canonical block object representing a Jordan block
structure associated with the infinite eigenvalue.

Each n-by-n Jordan block associated with the infinite eigenvalue is
defined as:

|1 0 0| |0 1 0|
N_n := | 1 . | - s| 0 . |

| . 0| | . 1|
|0 1| |0 0|

BlockObj = ijblock(IJordanBlocks) returns a new canonical block object
BlockObj representing a structure of Jordan blocks associated with the
infinite eigenvalue. The Jordan blocks are defined by the exponents
(s_n,, s_1) of the infinite elementary divisors. The vector
IJordanBlocks = [s_n, ..., s_1] is the structure integer partition
representing the (unordered) sizes (s_k)-by-(s_k) of the blocks.

BlockObj = ijblock(IJordanBlocks, Notation) also specifies the notation
used for IJordanBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = ijblock returns an empty Jordan block object.

The class ijblock provides the following methods for extracting
information and modifying the canonical block object.

ijblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker canonical form of the block object.
bcf - Brunovsky canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

ijblock Operators:

86 | 5 CANONICAL BLOCK OBJECTS User’s manual

==, ∼= (eq, ne) - Check if two block objects are equal.

See also fjblock, zjblock, mstruct, pstruct, ssstruct.

Reference page in Doc Center
doc ijblock

Class methods

kcf Kronecker canonical form of the block object.

[G,H] = kcf(BlockObj) returns the matrix pencil G-sH in Kronecker
Canonical Form (kcf) specified by the Jordan block object BlockObj
associated with the infinite eigenvalue. The matrix G is an identity
matrix and H is in Jordan canonical form (jcf).

... = kcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also fjblock/kcf, pstruct/kcf.

bcf Brunovsky canonical form of the block object.

[A,B,C,D] = bcf(BlockObj) returns the matrix quadruple (A,B,C,D) of the
system pencil S-sT = [A B; C D] - s[I 0; 0 0] in Brunovsky Canonical
Form (bcf) specified by the Jordan block object BlockObj associated
with the infinite eigenvalue. Consequently, the pencil S-sT consists
only of Jordan blocks associated with a infinite eigenvalue (N blocks).

... = bcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also kcf, jcf.

ijblock Create a Jordan block object associated with the infinite eigenvalue.

ijblock creates a canonical block object representing a Jordan block
structure associated with the infinite eigenvalue.

Each n-by-n Jordan block associated with the infinite eigenvalue is
defined as:

|1 0 0| |0 1 0|
N_n := | 1 . | - s| 0 . |

| . 0| | . 1|
|0 1| |0 0|

BlockObj = ijblock(IJordanBlocks) returns a new canonical block object

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 87

BlockObj representing a structure of Jordan blocks associated with the
infinite eigenvalue. The Jordan blocks are defined by the exponents
(s_n,, s_1) of the infinite elementary divisors. The vector
IJordanBlocks = [s_n, ..., s_1] is the structure integer partition
representing the (unordered) sizes (s_k)-by-(s_k) of the blocks.

BlockObj = ijblock(IJordanBlocks, Notation) also specifies the notation
used for IJordanBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = ijblock returns an empty Jordan block object.

The class ijblock provides the following methods for extracting
information and modifying the canonical block object.

ijblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker canonical form of the block object.
bcf - Brunovsky canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

ijblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also fjblock, zjblock, mstruct, pstruct, ssstruct.

5.6 KBLOCK

Create a K block object associated with the infinite eigenvalue.

kblock creates a canonical block object representing a symmetric K
block structure associated with the infinite eigenvalue.

Each n-by-n symmetric K block is defined as:
|0 1| |0 0|

K_n := | 1 | - s| 0 1|

88 | 5 CANONICAL BLOCK OBJECTS User’s manual

| . | | . . |
|1 0| |0 1 0|

BlockObj = kblock(KBlocks) returns a new canonical block object
BlockObj representing a structure of symmetric K blocks ("anti-
diagonal" Jordan blocks) associated with the infinite eigenvalue. The
vector KBlocks = [s_n, ..., s_1] is the structure integer partition
representing the (unordered) sizes (s_k)-by-(s_k) of the blocks.

BlockObj = kblock(SKBlocks, Notation) also specifies the notation used
for KBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = kblock returns an empty K block object.

The class kblock provides the following methods for extracting
information and modifying the canonical block object.

kblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

kblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also skblock, spstruct.

Reference page in Doc Center
doc kblock

Class methods

kcf Kronecker-like canonical form of the block object.

[G,H] = kcf(BlockObj) returns the square symmetric matrix pencil G-sH

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 89

in Kronecker-like canonical form specified by the K block object
BlockObj associated with the infinite eigenvalue.

... = kcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also spstruct/kcf.

kblock Create a K block object associated with the infinite eigenvalue.

kblock creates a canonical block object representing a symmetric K
block structure associated with the infinite eigenvalue.

Each n-by-n symmetric K block is defined as:
|0 1| |0 0|

K_n := | 1 | - s| 0 1|
| . | | . . |
|1 0| |0 1 0|

BlockObj = kblock(KBlocks) returns a new canonical block object
BlockObj representing a structure of symmetric K blocks ("anti-
diagonal" Jordan blocks) associated with the infinite eigenvalue. The
vector KBlocks = [s_n, ..., s_1] is the structure integer partition
representing the (unordered) sizes (s_k)-by-(s_k) of the blocks.

BlockObj = kblock(SKBlocks, Notation) also specifies the notation used
for KBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = kblock returns an empty K block object.

The class kblock provides the following methods for extracting
information and modifying the canonical block object.

kblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.

90 | 5 CANONICAL BLOCK OBJECTS User’s manual

kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

kblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also skblock, spstruct.

5.7 LSBLOCK

Create a left singular block object.

lsblock creates a canonical block object representing a left singular
block structure.

Each (n+1)-by-n left singular block is defined as:
|0 0| |1 0|

L_n^T := |1 . | - s|0 . |
| . 0| | . 1|
|0 1| |0 0|

BlockObj = lsblock(LSBlocks) returns a new canonical block object
BlockObj representing a structure of left singular blocks (L^T blocks).
The left singular blocks are defined by the row (left) minimal indices
(eta_n, ..., eta_1), and the vector LSBlocks = [eta_n, ..., eta_1] is
the structure integer partition representing the (unordered) sizes
(eta_k+1)-by-(eta_k) of the blocks.

BlockObj = lsblock(LSBlocks, Notation) also specifies the notation used
for LSBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = lsblock returns an empty left singular block object.

The class lsblock provides the following methods for extracting
information and modifying the canonical block object.

lsblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 91

sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker canonical form of the block object.
bcf - Brunovsky canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

lsblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also rsblock, pstruct, ssstruct.

Reference page in Doc Center
doc lsblock

Class methods

kcf Kronecker canonical form of the block object.

[G,H] = kcf(BlockObj) returns the matrix pencil G-sH in Kronecker
Canonical Form (kcf) specified by the left singular block object
BlockObj. The pencil G-sH only consists of left singular blocks (L^T
blocks).

... = kcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also pstruct/kcf.

bcf Brunovsky canonical form of the block object.

[A,C] = bcf(BlockObj) returns the pair of matrices (A,C) of the system
pencil S-sT = [A; C] - s[I; 0] in Brunovsky Canonical Form (bcf)
specified by the left singular block object BlockObj. Consequently, the
pencil S-sT consists only of left singular blocks (L^T blocks).

[A,B,C,D] = bcf(BlockObj) also returns the empty matrices B and D of
the system pencil S-sT = [A B; C D] - s[I 0; 0 0].

... = bcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also kcf, ssstruct/bcf.

lsblock Create a left singular block object.

lsblock creates a canonical block object representing a left singular

92 | 5 CANONICAL BLOCK OBJECTS User’s manual

block structure.

Each (n+1)-by-n left singular block is defined as:
|0 0| |1 0|

L_n^T := |1 . | - s|0 . |
| . 0| | . 1|
|0 1| |0 0|

BlockObj = lsblock(LSBlocks) returns a new canonical block object
BlockObj representing a structure of left singular blocks (L^T blocks).
The left singular blocks are defined by the row (left) minimal indices
(eta_n, ..., eta_1), and the vector LSBlocks = [eta_n, ..., eta_1] is
the structure integer partition representing the (unordered) sizes
(eta_k+1)-by-(eta_k) of the blocks.

BlockObj = lsblock(LSBlocks, Notation) also specifies the notation used
for LSBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = lsblock returns an empty left singular block object.

The class lsblock provides the following methods for extracting
information and modifying the canonical block object.

lsblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker canonical form of the block object.
bcf - Brunovsky canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

lsblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also rsblock, pstruct, ssstruct.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 93

5.8 MBLOCK

Create a singular M block object.

mblock creates a canonical block object representing a symmetric
singular M block structure.

Each (2n+1)-by-(2n+1) symmetric M block is defined as:
| 0 G_n^T| | 0 F_n^T|

M_n := | | - s| |,
|G_n 0 | |F_n 0 |

where
|0 1 0| |1 0 0|

G_n := | . . |, and F_n := | . . |
|0 0 1| |0 1 0|

note: G_n - sF_n forms a right singular block L_n, and
G_n^T - sF_n^T a left singular block L_n^T.

BlockObj = mblock(MBlocks) returns a new canonical block object
BlockObj representing a structure of symmetric M blocks (pairs of
singular blocks). The vector MBlocks = [epsilon_n, ..., epsilon_1] is
the structure integer partition representing the (unordered) sizes
(2*epsilon_k+1)-by-(2*epsilon_k+1) of the blocks.

BlockObj = mblock(MBlocks, Notation) also specifies the notation used
for MBlocks. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = mblock returns an empty M block object.

The class mblock provides the following methods for extracting
information and modifying the canonical block object.

mblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.

94 | 5 CANONICAL BLOCK OBJECTS User’s manual

block2cell - Convert a block object to a cell array of strings.

mblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also smblock, spstruct.

Reference page in Doc Center
doc mblock

Class methods

kcf Kronecker-like canonical form of the block object.

[G,H] = kcf(BlockObj) returns the symmetric matrix pencil G-sH in the
Kronecker-like canonical form specified by the singular M block object
BlockObj. The pencil G-sH only consists of singular blocks (SM blocks).

... = kcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also spstruct/kcf.

mblock Create a singular M block object.

mblock creates a canonical block object representing a symmetric
singular M block structure.

Each (2n+1)-by-(2n+1) symmetric M block is defined as:
| 0 G_n^T| | 0 F_n^T|

M_n := | | - s| |,
|G_n 0 | |F_n 0 |

where
|0 1 0| |1 0 0|

G_n := | . . |, and F_n := | . . |
|0 0 1| |0 1 0|

note: G_n - sF_n forms a right singular block L_n, and
G_n^T - sF_n^T a left singular block L_n^T.

BlockObj = mblock(MBlocks) returns a new canonical block object
BlockObj representing a structure of symmetric M blocks (pairs of
singular blocks). The vector MBlocks = [epsilon_n, ..., epsilon_1] is
the structure integer partition representing the (unordered) sizes
(2*epsilon_k+1)-by-(2*epsilon_k+1) of the blocks.

BlockObj = mblock(MBlocks, Notation) also specifies the notation used
for MBlocks. Valid notations are:

'segre' Indices are ordered in a non-increasing order.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 95

'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = mblock returns an empty M block object.

The class mblock provides the following methods for extracting
information and modifying the canonical block object.

mblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

mblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also smblock, spstruct.

5.9 PBLOCK

Create an abstract parametric block object.

pblock is an abstract canonical block class representing a parametric
block structure.

The class pblock also provides generic methods for extracting
information and modifying the canonical block object.

See also mcsblock.

Reference page in Doc Center
doc pblock

Class methods

get Get the canonical structure information.

96 | 5 CANONICAL BLOCK OBJECTS User’s manual

V = get(BlockObj,PropertyName) returns the value of the specified
property for the canonical block object BlockObj. PropertyName can be
'StructInt', 'Eigenvalue', or 'Parameter'. 'StructInt' returns the
structure integer partition in Sizes notation, and 'Eigenvalue' or
'Parameter' returns the associated parameter (eigenvalue).

Blockv = get(BlockObj,'StructInt',Notation) also specifies the notation
of the returned vector Blockv. Valid values of Notation are 'segre',
'weyr', and 'sizes' (default).

[Blockv,P] = get(BlockObj,Notation) returns the structure integer
partition with notation Notation in the vector Blockv, and the
associated parameter in P. If Notation is omitted, 'sizes' is assumed.

See also set.

set Set the canonical structure information.

set(BlockObj,'PropertyName',PropertyValue) sets the value of the
specified property for the canonical block object BlockObj.
set(BlockObj,'PropertyName1',PropertyValue1,'PropertyName2',PropertyValue2,...)
sets multiple property values with a single statement.

PropertyName can be 'StructInt', 'Eigenvalue', or 'Parameter'.
'StructInt' sets the structure integer partition, where PropertyValue
is a vector of the block sizes. Either 'Eigenvalue' or 'Parameter' can
be specified to set the associated parameter (eigenvalue).

set(BlockObj,'StructInt',PropertyValue,...,Notation) also specifies in
which notation the structure integer partition is represented in. Valid
values of Notation are 'sizes' (default), 'segre', or 'weyr'.
Specifying notation only make sense when 'StructInt' is also set.

set(BlockObj,Blockv,P,Notation) is a compact form which sets the
canonical block structure to the structure integer partition Blockv in
notation Notation with the associated parameter P. P and Notation can
be omitted.

See also get.

compare Compare two parameter block objects.

C = compare(B1,B2) compares the two block objects B1 and B2 of the same
class, and returns 0 if equal, 1 if B1 > B2, and -1 if B1 < B2. The
comparison is done by comparing the sizes of the canonical blocks.
First the largest block from each object are compared then the second
largest until one is larger than the other or no more blocks exist.
Any parameters are ignored.

C = compare(B1,B2,'weyr') uses the Weyr characteristics resulting in

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 97

that the comparison is done by comparing the number of blocks. First
the number of all blocks are compared then the number of second
smallest and larger blocks until one quantity is larger than the other.

[C2, D] = compare(B1,B2,Tol) or
[C2, D] = compare(B1,B2,Tol,'weyr') returns the row vector C2 = [C,P],
where C is the result from above and P is the result from comparing the
parameters (eigenvalues). It uses the tolerance Tol for comparing the
parameters. Parameter p1 from B1 is assumed to be equal to p2 from B2
if abs(p1-p2) <= Tol, larger if p1 > p2, otherwise smaller. For blocks
with no parameter P is always 0. The optional D returns the difference
abs(p1-p2) between the two parameters, or NaN if the blocks have no
parameter.

C = compare(B1,B2,'size') only compares the total sizes of the block
objects. Returns 0 if equal, 1 if S1 > S2, and -1 if S1 < S2.

See also eq.

ne (∼=) Not equal relation between two block objects.

Block1 ∼= Block2 checks if the two canonical block objects are not
equal.

eq (==) Check if two block objects are equal.

Block1 == Block2 checks if the two canonical block objects are equal.
Note that for two blocks objects to be equal, those parameters must
also be exactly equal.

pblock Create an abstract parametric block object.

pblock is an abstract canonical block class representing a parametric
block structure.

The class pblock also provides generic methods for extracting
information and modifying the canonical block object.

See also mcsblock.

5.10 RSBLOCK

Create a right singular block object.

rsblock creates a canonical block object representing a right singular
block structure.

Each n-by-(n+1) right singular block is defined as:
|0 1 0| |1 0 0|

L_n := | . . | - s| . . |

98 | 5 CANONICAL BLOCK OBJECTS User’s manual

|0 0 1| |0 1 0|

BlockObj = rsblock(RSBlocks) returns a new canonical block object
BlockObj representing a structure of right singular blocks (L blocks).
The right singular blocks are defined by the column (right) minimal
indices (epsilon_n, ..., epsilon_1), and the vector RSBlocks =
[epsilon_n, ..., epsilon_1] is the structure integer partition
representing the (unordered) sizes (epsilon_k)-by-(epsilon_k+1) of the
blocks.

BlockObj = rsblock(RSBlocks, Notation) also specifies the notation used
for RSBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = rsblock returns an empty right singular block object.

The class rsblock provides the following methods for extracting
information and modifying the canonical block object.

rsblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker canonical form of the block object.
bcf - Brunovsky canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

rsblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also lsblock, pstruct, ssstruct.

Reference page in Doc Center
doc rsblock

Class methods

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 99

kcf Kronecker canonical form of the block object.

[G,H] = kcf(BlockObj) returns the matrix pencil G-sH in Kronecker
Canonical Form (kcf) specified by the right singular block object
BlockObj. The pencil G-sH only consists of right singular blocks (L
blocks).

... = kcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also pstruct/kcf.

bcf Brunovsky canonical form of the block object.

[A,B] = bcf(BlockObj) returns the matrix pair (A,B) of the system
pencil S-sT = [A B] - s[I 0] in Brunovsky Canonical Form (bcf)
specified by the right singular block object BlockObj. Consequently,
the pencil S-sT consists only of right singular blocks (L blocks).

[A,B,C,D] = bcf(BlockObj) also returns the empty matrices C and D of
the system pencil S-sT = [A B; C D] - s[I 0; 0 0].

... = bcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also kcf, ssstruct/bcf.

rsblock Create a right singular block object.

rsblock creates a canonical block object representing a right singular
block structure.

Each n-by-(n+1) right singular block is defined as:
|0 1 0| |1 0 0|

L_n := | . . | - s| . . |
|0 0 1| |0 1 0|

BlockObj = rsblock(RSBlocks) returns a new canonical block object
BlockObj representing a structure of right singular blocks (L blocks).
The right singular blocks are defined by the column (right) minimal
indices (epsilon_n, ..., epsilon_1), and the vector RSBlocks =
[epsilon_n, ..., epsilon_1] is the structure integer partition
representing the (unordered) sizes (epsilon_k)-by-(epsilon_k+1) of the
blocks.

BlockObj = rsblock(RSBlocks, Notation) also specifies the notation used
for RSBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.

100 | 5 CANONICAL BLOCK OBJECTS User’s manual

'sizes' Sizes may be unordered. (default)

BlockObj = rsblock returns an empty right singular block object.

The class rsblock provides the following methods for extracting
information and modifying the canonical block object.

rsblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker canonical form of the block object.
bcf - Brunovsky canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

rsblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also lsblock, pstruct, ssstruct.

5.11 SBLOCK

Abstract singular block class

sblock is an abstract canonical block class representing a singular
block structure.

See also rsblock, lsblock, mblock, smblock, mcsblock.

Reference page in Doc Center
doc sblock

Class methods

sblock Abstract singular block class

sblock is an abstract canonical block class representing a singular
block structure.

See also rsblock, lsblock, mblock, smblock, mcsblock.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 101

5.12 SGBLOCK

Create a *Gamma block object.

sgblock creates a canonical block object representing a *Gamma block
structure.

Each n-by-n *Gamma block associated with a complex parameter mu is
defined as:

|0 ...|
| ... |

*Gamma_n(mu) := mu| 1 1 |
| -1 -1 |
|1 1 0|

where |mu| = 1.

BlockObj = sgblock(SGBlocks, P) returns a new canonical block object
BlockObj representing a structure of *Gamma blocks. The vector SGBlocks
= [h_n, ..., h_1] is the structure integer partition representing the
(unordered) sizes (h_k)-by-(h_k) of the blocks and P is the associated
complex parameter. The parameter P must be on the complex unit circle,
i.e., abs(P) = 1.

BlockObj = sgblock(SGBlocks, P, Notation) also specifies the notation
used for SGBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = sgblock returns an empty *Gamma block object.

The class sgblock provides the following methods for extracting
information and modifying the canonical block object.

sgblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
ccf - Congruence canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

102 | 5 CANONICAL BLOCK OBJECTS User’s manual

sgblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also gblock, scmstruct.

Reference page in Doc Center
doc sgblock

Class methods

ccf Congruence canonical form of the block object.

H = ccf(BlockObj) returns the matrix H in Congruence Canonical Form
(ccf) specified by the *Gamma block object BlockObj. The matrix H only
consists of *Gamma blocks.

... = ccf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also scmstruct/ccf.

sgblock Create a *Gamma block object.

sgblock creates a canonical block object representing a *Gamma block
structure.

Each n-by-n *Gamma block associated with a complex parameter mu is
defined as:

|0 ...|
| ... |

*Gamma_n(mu) := mu| 1 1 |
| -1 -1 |
|1 1 0|

where |mu| = 1.

BlockObj = sgblock(SGBlocks, P) returns a new canonical block object
BlockObj representing a structure of *Gamma blocks. The vector SGBlocks
= [h_n, ..., h_1] is the structure integer partition representing the
(unordered) sizes (h_k)-by-(h_k) of the blocks and P is the associated
complex parameter. The parameter P must be on the complex unit circle,
i.e., abs(P) = 1.

BlockObj = sgblock(SGBlocks, P, Notation) also specifies the notation
used for SGBlocks. Valid notations are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = sgblock returns an empty *Gamma block object.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 103

The class sgblock provides the following methods for extracting
information and modifying the canonical block object.

sgblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
ccf - Congruence canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

sgblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also gblock, scmstruct.

5.13 SHBLOCK

Create an SH block object.

shblock creates a canonical block object representing a skew-symmetric
SH block structure associated with a finite or unspecified eigenvalue.

Each 2n-by-2n skew-symmetric SH block is defined as:
| 0 J_n(mu)| | 0 I_n|

SH_n := | | - s| |,
|-J_n(mu)^T 0 | |-I_n 0 |

where J_n(mu) is an n-by-n Jordan block associated with the eigenvalue
mu.

BlockObj = shblock(SHBlocks, Ev) returns a new canonical block object
BlockObj representing a structure of skew-symmetric SH blocks (pairs of
Jordan blocks) associated with a finite or unspecified eigenvalue. The
vector SHBlocks = [h_n, ..., h_1] is the structure integer partition
representing the (unordered) sizes (2*h_k)-by-(2*h_k) of the blocks and
Ev is the associated eigenvalue. Ev can be a complex number or NaN
(unspecified eigenvalue). If Ev is omitted, the eigenvalue is assumed
to be unspecified.

BlockObj = shblock(SHBlocks, Ev, Notation) also specifies the notation

104 | 5 CANONICAL BLOCK OBJECTS User’s manual

used for SHBlocks. Valid notations are:
'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = shblock returns an empty SH block object.

The class shblock provides the following methods for extracting
information and modifying the canonical block object.

shblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

shblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also hblock, sspstruct.

Reference page in Doc Center
doc shblock

Class methods

kcf Kronecker-like canonical form of the block object.

[G,H] = kcf(BlockObj) returns the square skew-symmetric matrix pencil
G-sH in Kronecker-like canonical form specified by the SH block object
BlockObj.

... = kcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also sspstruct/kcf.

shblock Create an SH block object.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 105

shblock creates a canonical block object representing a skew-symmetric
SH block structure associated with a finite or unspecified eigenvalue.

Each 2n-by-2n skew-symmetric SH block is defined as:
| 0 J_n(mu)| | 0 I_n|

SH_n := | | - s| |,
|-J_n(mu)^T 0 | |-I_n 0 |

where J_n(mu) is an n-by-n Jordan block associated with the eigenvalue
mu.

BlockObj = shblock(SHBlocks, Ev) returns a new canonical block object
BlockObj representing a structure of skew-symmetric SH blocks (pairs of
Jordan blocks) associated with a finite or unspecified eigenvalue. The
vector SHBlocks = [h_n, ..., h_1] is the structure integer partition
representing the (unordered) sizes (2*h_k)-by-(2*h_k) of the blocks and
Ev is the associated eigenvalue. Ev can be a complex number or NaN
(unspecified eigenvalue). If Ev is omitted, the eigenvalue is assumed
to be unspecified.

BlockObj = shblock(SHBlocks, Ev, Notation) also specifies the notation
used for SHBlocks. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = shblock returns an empty SH block object.

The class shblock provides the following methods for extracting
information and modifying the canonical block object.

shblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

shblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

106 | 5 CANONICAL BLOCK OBJECTS User’s manual

See also hblock, sspstruct.

5.14 SKBLOCK

Create an SK block object associated with the infinite eigenvalue.

skblock creates a canonical block object representing a skew-symmetric
SK block structure associated with the infinite eigenvalue.

Each 2n-by-2n skew-symmetric SK block is defined as:
| 0 I_n| | 0 J_n(0)|

SK_n := | | - s| |,
|-I_n 0 | |-J_n(0)^T 0 |

where J_n(0) is an n-by-n Jordan block associated with the zero
eigenvalue.

BlockObj = skblock(SKBlocks) returns a new canonical block object
BlockObj representing a structure of skew-symmetric SK blocks (pairs of
Jordan blocks) associated with the infinite eigenvalue. The vector
SKBlocks = [s_n, ..., s_1] is the structure integer partition
representing the (unordered) sizes (2*s_k)-by-(2*s_k) of the blocks.

BlockObj = skblock(SKBlocks, Notation) also specifies the
notation used for SKBlocks. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = skblock returns an empty SK block object.

The class skblock provides the following methods for extracting
information and modifying the canonical block object.

skblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 107

skblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also kblock, sspstruct.

Reference page in Doc Center
doc skblock

Class methods

kcf Kronecker-like canonical form of the block object.

[G,H] = kcf(BlockObj) returns the matrix pencil G-sH in Kronecker-like
canonical form specified by the SK block object BlockObj associated
with the infinite eigenvalue.

... = kcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also sspstruct/kcf.

skblock Create an SK block object associated with the infinite eigenvalue.

skblock creates a canonical block object representing a skew-symmetric
SK block structure associated with the infinite eigenvalue.

Each 2n-by-2n skew-symmetric SK block is defined as:
| 0 I_n| | 0 J_n(0)|

SK_n := | | - s| |,
|-I_n 0 | |-J_n(0)^T 0 |

where J_n(0) is an n-by-n Jordan block associated with the zero
eigenvalue.

BlockObj = skblock(SKBlocks) returns a new canonical block object
BlockObj representing a structure of skew-symmetric SK blocks (pairs of
Jordan blocks) associated with the infinite eigenvalue. The vector
SKBlocks = [s_n, ..., s_1] is the structure integer partition
representing the (unordered) sizes (2*s_k)-by-(2*s_k) of the blocks.

BlockObj = skblock(SKBlocks, Notation) also specifies the
notation used for SKBlocks. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = skblock returns an empty SK block object.

108 | 5 CANONICAL BLOCK OBJECTS User’s manual

The class skblock provides the following methods for extracting
information and modifying the canonical block object.

skblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

skblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also kblock, sspstruct.

5.15 SMBLOCK

Create a singular SM block object.

smblock creates a canonical block object representing a singular
skew-symmetric SM block structure.

Each (2n+1)-by-(2n+1) skew-symmetric SM block is defined as:
| 0 G_n| | 0 F_n|

SM_n := | | - s| |,
|-G_n^T 0 | |-F_n^T 0 |

where
|0 1 0| |1 0 0|

G_n := | . . | and F_n := | . . |
|0 0 1| |0 1 0|

note: G_n - sF_n forms a right singular block L_n, and
G_n^T - sF_n^T a left singular block L_n^T.

BlockObj = smblock(SMBlocks) returns a new canonical block object
BlockObj representing a structure of skew-symmetric SM blocks (pairs of
singular blocks). The vector SMBlocks = [epsilon_n, ..., epsilon_1] is
the structure integer partition representing the (unordered) sizes
(2*epsilon_k+1)-by-(2*epsilon_k+1) of the blocks.

BlockObj = smblock(SMBlocks, Notation) also specifies the notation used

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 109

for SMBlocks. Valid notations are:
'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = smblock returns an empty SM block object.

The class smblock provides the following methods for extracting
information and modifying the canonical block object.

smblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

smblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also mblock, sspstruct.

Reference page in Doc Center
doc smblock

Class methods

kcf Kronecker-like canonical form of the block object.

[G,H] = kcf(BlockObj) returns the skew-symmetric matrix pencil G-sH in
the Kronecker-like canonical form specified by the singular SM block
object BlockObj. The pencil G-sH only consists of singular blocks (SM
blocks).

... = kcf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also sspstruct/kcf.

110 | 5 CANONICAL BLOCK OBJECTS User’s manual

smblock Create a singular SM block object.

smblock creates a canonical block object representing a singular
skew-symmetric SM block structure.

Each (2n+1)-by-(2n+1) skew-symmetric SM block is defined as:
| 0 G_n| | 0 F_n|

SM_n := | | - s| |,
|-G_n^T 0 | |-F_n^T 0 |

where
|0 1 0| |1 0 0|

G_n := | . . | and F_n := | . . |
|0 0 1| |0 1 0|

note: G_n - sF_n forms a right singular block L_n, and
G_n^T - sF_n^T a left singular block L_n^T.

BlockObj = smblock(SMBlocks) returns a new canonical block object
BlockObj representing a structure of skew-symmetric SM blocks (pairs of
singular blocks). The vector SMBlocks = [epsilon_n, ..., epsilon_1] is
the structure integer partition representing the (unordered) sizes
(2*epsilon_k+1)-by-(2*epsilon_k+1) of the blocks.

BlockObj = smblock(SMBlocks, Notation) also specifies the notation used
for SMBlocks. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = smblock returns an empty SM block object.

The class smblock provides the following methods for extracting
information and modifying the canonical block object.

smblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
kcf - Kronecker-like canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 111

smblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also mblock, sspstruct.

5.16 SWBLOCK

Create a *W block object.

swblock creates a canonical block object representing a *W block
structure associated with a specified and admissible eigenvalue.

Each 2n-by-2n *W block associated with a finite eigenvalue mu is
defined as:

| 0 I_n|
*W_n(mu) := | |

|J_n(mu) 0 |
where |mu| > 1 and J_n(mu) is an n-by-n Jordan block with the
associated eigenvalue mu.

BlockObj = swblock(SWBlocks, Ev) returns a new canonical block object
BlockObj representing a structure of *W blocks associated with finite
Jordan blocks. The vector SWBlocks = [h_n, ..., h_1] is the structure
integer partition representing the (unordered) sizes (2*h_k)-by-(2*h_k)
of the blocks and Ev is the associated eigenvalue. Ev must be a complex
scalar with its complex modulus greater than one, i.e., abs(Ev) > 1.

BlockObj = swblock(SWBlocks, Ev, Notation) also specifies the notation
used for SWBlocks. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = swblock returns an empty *W block object.

The class swblock provides the following methods for extracting
information and modifying the canonical block object.

swblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.

112 | 5 CANONICAL BLOCK OBJECTS User’s manual

weyr - Weyr characteristics.
ccf - Congruence canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

swblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also wblock, scmstruct.

Reference page in Doc Center
doc swblock

Class methods

swblock Create a *W block object.

swblock creates a canonical block object representing a *W block
structure associated with a specified and admissible eigenvalue.

Each 2n-by-2n *W block associated with a finite eigenvalue mu is
defined as:

| 0 I_n|
*W_n(mu) := | |

|J_n(mu) 0 |
where |mu| > 1 and J_n(mu) is an n-by-n Jordan block with the
associated eigenvalue mu.

BlockObj = swblock(SWBlocks, Ev) returns a new canonical block object
BlockObj representing a structure of *W blocks associated with finite
Jordan blocks. The vector SWBlocks = [h_n, ..., h_1] is the structure
integer partition representing the (unordered) sizes (2*h_k)-by-(2*h_k)
of the blocks and Ev is the associated eigenvalue. Ev must be a complex
scalar with its complex modulus greater than one, i.e., abs(Ev) > 1.

BlockObj = swblock(SWBlocks, Ev, Notation) also specifies the notation
used for SWBlocks. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = swblock returns an empty *W block object.

The class swblock provides the following methods for extracting
information and modifying the canonical block object.

swblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 113

copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
ccf - Congruence canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

swblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also wblock, scmstruct.

5.17 WBLOCK

Create a W block object.

wblock creates a canonical block object representing a W block
structure associated with a specified and admissible eigenvalue.

Each 2n-by-2n W block associated with a finite eigenvalue mu is defined
as:

| 0 I_n|
W_n := | |

|J_n(mu) 0 |
where mu ∼= {0, (-1)^(n+1)} and J_n(mu) is an n-by-n Jordan block with
the associated eigenvalue mu.

BlockObj = wblock(WBlocks, Ev) returns a new canonical block object
BlockObj representing a structure of W blocks associated with finite
Jordan blocks. The vector WBlocks = [h_n, ..., h_1] is the structure
integer partition representing the (unordered) sizes (2*h_k)-by-(2*h_k)
of the blocks and Ev is the associated eigenvalue. Ev must be a
non-zero complex scalar and not equal to (-1)^('size of the block'/2 +
1) for all blocks.

BlockObj = wblock(WBlocks, Ev, Notation) also specifies the notation
used for WBlocks. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = wblock returns an empty W block object.

114 | 5 CANONICAL BLOCK OBJECTS User’s manual

The class wblock provides the following methods for extracting
information and modifying the canonical block object.

wblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
ccf - Congruence canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

wblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also swblock, cmstruct.

Reference page in Doc Center
doc wblock

Class methods

ccf Congruence canonical form of the block object.

H = ccf(BlockObj) returns the square matrix H in Congruence Canonical
Form (ccf) specified by the W block object BlockObj.

... = ccf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also zjblock/ccf, cmstruct/ccf.

wblock Create a W block object.

wblock creates a canonical block object representing a W block
structure associated with a specified and admissible eigenvalue.

Each 2n-by-2n W block associated with a finite eigenvalue mu is defined
as:

| 0 I_n|
W_n := | |

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 115

|J_n(mu) 0 |
where mu ∼= {0, (-1)^(n+1)} and J_n(mu) is an n-by-n Jordan block with
the associated eigenvalue mu.

BlockObj = wblock(WBlocks, Ev) returns a new canonical block object
BlockObj representing a structure of W blocks associated with finite
Jordan blocks. The vector WBlocks = [h_n, ..., h_1] is the structure
integer partition representing the (unordered) sizes (2*h_k)-by-(2*h_k)
of the blocks and Ev is the associated eigenvalue. Ev must be a
non-zero complex scalar and not equal to (-1)^('size of the block'/2 +
1) for all blocks.

BlockObj = wblock(WBlocks, Ev, Notation) also specifies the notation
used for WBlocks. Valid notations are:

'segre' Indices are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Indices may be unordered. (default)

BlockObj = wblock returns an empty W block object.

The class wblock provides the following methods for extracting
information and modifying the canonical block object.

wblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
ccf - Congruence canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

wblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also swblock, cmstruct.

5.18 ZJBLOCK

Create a Jordan block object associated with the zero eigenvalue.

zjblock creates a canonical block object representing a Jordan block

116 | 5 CANONICAL BLOCK OBJECTS User’s manual

structure associated with the zero eigenvalue.

Each n-by-n Jordan block associated with the zero eigenvalue is defined
as:

|0 1 0|
J_n(0) := | 0 . |

| . 1|
|0 0|

BlockObj = zjblock(ZJordanBlocks) returns a new canonical block object
BlockObj representing a structure of Jordan blocks associated with the
zero eigenvalue. The vector ZJordanBlocks = [s_n, ..., s_1] is the
structure integer partition representing the (unordered) sizes
(s_k)-by-(s_k) of the blocks.

BlockObj = zjblock(ZJordanBlocks, Arg) also specifies the notation Arg
used for ZJordanBlocks. Valid notation arguments are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = zjblock returns an empty Jordan block object.

The class zjblock provides the following methods for extracting
information and modifying the canonical block object.

zjblock Methods:
size - Total size of the represented canonical blocks.
numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
jcf - Jordan canonical form of the block object.
ccf - Congruence canonical form of the block object.
kcf - Kronecker canonical form of the block object.
bcf - Brunovsky canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

zjblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also fjblock, ijblock, cmstruct, scmstruct, mstruct.

MCS Toolbox, v0.7 5 CANONICAL BLOCK OBJECTS | 117

Reference page in Doc Center
doc zjblock

Class methods

ccf Congruence canonical form of the block object.

H = ccf(BlockObj) returns the matrix H in the Congruence Canonical Form
(ccf) specified by the Jordan block object BlockObj associated with the
zero eigenvalue.

... = ccf(BlockObj,'segre') sorts the blocks in non-increasing block
size order. By default are the blocks presented in the order they were
created.

See also jcf, cmstruct/ccf, scmstruct/ccf.

zjblock Create a Jordan block object associated with the zero eigenvalue.

zjblock creates a canonical block object representing a Jordan block
structure associated with the zero eigenvalue.

Each n-by-n Jordan block associated with the zero eigenvalue is defined
as:

|0 1 0|
J_n(0) := | 0 . |

| . 1|
|0 0|

BlockObj = zjblock(ZJordanBlocks) returns a new canonical block object
BlockObj representing a structure of Jordan blocks associated with the
zero eigenvalue. The vector ZJordanBlocks = [s_n, ..., s_1] is the
structure integer partition representing the (unordered) sizes
(s_k)-by-(s_k) of the blocks.

BlockObj = zjblock(ZJordanBlocks, Arg) also specifies the notation Arg
used for ZJordanBlocks. Valid notation arguments are:

'segre' Sizes are ordered in a non-increasing order.
'weyr' Weyr characteristics.
'sizes' Sizes may be unordered. (default)

BlockObj = zjblock returns an empty Jordan block object.

The class zjblock provides the following methods for extracting
information and modifying the canonical block object.

zjblock Methods:
size - Total size of the represented canonical blocks.

118 | 5 CANONICAL BLOCK OBJECTS User’s manual

numblk - Number of canonical blocks.
copy - Return a copy of the block object.
compare - Compare two block objects.
isempty - True for empty canonical block object.
issingular - True for singular canonical block object.
isregular - True for regular canonical block object.
set - Set the canonical structure information.
get - Get the canonical structure information.
sizes - Canonical block sizes.
segre - Segre characteristics.
weyr - Weyr characteristics.
jcf - Jordan canonical form of the block object.
ccf - Congruence canonical form of the block object.
kcf - Kronecker canonical form of the block object.
bcf - Brunovsky canonical form of the block object.
char - Convert a block object to a string.
block2cell - Convert a block object to a cell array of strings.

zjblock Operators:
==, ∼= (eq, ne) - Check if two block objects are equal.

See also fjblock, ijblock, cmstruct, scmstruct, mstruct.

MCS Toolbox, v0.7 6 CANONICAL FORMS | 119

6 Canonical Forms

Methods for computing the canonical form.

canonicalforms returns a matrix or matrix pencil in the canonical
form of the specified canonical structure object.

Can only be accessed through a canonical structure object (a subclass
of mcsstruct).

Reference page in Doc Center
doc canonicalforms

The class methods are listed below.

6.1 BCF

bcf System pencil in the Brunovsky canonical form.

[A,B,C,D] = bcf(StructObj) takes a state-space system structure
object StructObj and returns the corresponding system pencil

S-sT = [A B; C D] -s[I 0; 0 0],
in a generalized Brunovsky Canonical Form (bcf).

[S,T] = bcf(StructObj) returns the system pencil S-sT above.

[A,B] = bcf(StructObj,'ab') returns the matrix pair (A,B) of the
sub-system pencil [A B]-s[I 0] in controllability bcf.

[A,C] = bcf(StructObj,'ac') returns the matrix pair (A,C) of the
sub-system pencil [A; C]-s[I; 0] in observability bcf.

[A2,B2,C2,D2,P,S,T,R,Q] = bcf(StructObj) returns a transformed
system pencil and the transformation matrices such that

|P S|(|A B| _ |sI 0|)|P' 0 |
|0 T|(|C D| | 0 0|)|R Q'|
=
|A2 B2| _ |sI 0|
|C2 D2| | 0 0|

where P, T, and Q are random orthonormal matrices and S and R are
random matrices of conforming sizes.

[A2,B2,P,R,Q] = bcf(StructObj,'ab') or
[A2,C2,P,S,T] = bcf(StructObj,'ac') returns the transformed
system pencil and the transformation matrices of the sub-system
pencils [A B]-s[I 0] or [A; C]-s[I; 0], respectively.

[G,H,P,Q,S,T] = bcf(StructObj) returns the matrices G, H, P, and
Q such that P(S-sT)Q' = G-sH where P and Q are random orthonormal

120 | 6 CANONICAL FORMS User’s manual

matrices.

... = bcf(...,'segre') sorts the blocks in each canonical
block object in non-increasing block size order. By default are
the blocks presented in the order they were created.

Valid canonical structure objects are: ssstruct

See also ssstruct, kcf.

6.2 KCF

kcf Matrix pencil in the Kronecker canonical form.

[G,H] = kcf(StructObj) takes a pencil structure object
StructObj and returns a matrix pencil G-sH in Kronecker Canonical
Form (kcf) corresponding to the structure. (See below for the
corresponding syntax for matrices.)

[A,B,P,Q] = kcf(StructObj) returns the matrices A, B, P, and Q
such that P(G-sH)Q' = A-sB where P and Q are random orthonormal
matrices.

[A,B,P,Q,G,H] = kcf(StructObj) also returns G and H in kcf.

... = kcf(StructObj,'segre') sorts the blocks in each canonical
block object in non-increasing block size order. By default are
the blocks presented in the order they were created.

Valid canonical structure objects are: pstruct, spstruct,
sspstruct, ssstruct.

Examples:
>> pstr = pstruct([], [], {[2] [1]}, [1 3], [2]);
>> [G,H] = pstr.kcf;
returns a matrix pencil of the following form:

| J2(1)-sI 0 0 |
G-sH = | 0 J1(3)-sI 0 |

| 0 0 N2 |

See also pstruct, spstruct, sspstruct, ssstruct.

6.3 CCF

ccf Matrix in the congruent canonical form.

C = ccf(StructObj) takes a matrix structure object StructObj and
returns a matrix C in Congruent Canonical Form (ccf)
corresponding to the canonical structure information.

MCS Toolbox, v0.7 6 CANONICAL FORMS | 121

[X,Z] = ccf(StructObj) returns the two matrices Z and X such
that Z*C*Z' = X, where Z is a random orthonormal matrix.

[X,Z,C] = ccf(StructObj) also returns C in ccf.

... = ccf(StructObj,'segre') sorts the blocks in each canonical
block object in non-increasing block size order. By default are
the blocks presented in the order they were created.

Valid canonical structure objects are: cmstruct, scmstruct.

Example:
>> C = ccf(cmstruct([2],[2],4));
returns a 2-by-2 Gamma block and one W block of
size 4-by-4 with the associated eigenvalue 4:

|0 -1 0 0 0 0|
|1 1 0 0 0 0|
|0 0 0 0 1 0|

C = |0 0 0 0 0 1|
|0 0 4 1 0 0|
|0 0 0 4 0 0|

See also cmstruct, scmstruct.

6.4 JCF

jcf Matrix in the Jordan canonical form.

J = jcf(StructObj) takes a matrix structure object StructObj and
returns a matrix J in Jordan Canonical Form (jcf) corresponding
to the canonical structure information.

[X,Z] = jcf(StructObj) returns the two matrices Z and X such
that ZJZ' = X, where Z is a random orthonormal matrix.

[X,Z,J] = jcf(StructObj) also returns J in jcf.

... = jcf(StructObj,'segre') sorts the blocks in each canonical
block object in non-increasing block size order. By default are
the blocks presented in the order they were created.

Valid canonical structure objects are: mstruct.

Example:
>> J = jcf(mstruct([3 1],4)); returns a matrix J with one
Jordan block of size 3-by-3 and one of size 1-by-1, both with
eigenvalue 4.

See also mstruct, kcf.

122 | 6 CANONICAL FORMS User’s manual

6.5 JNF

jnf Matrix in the Jordan normal form.

J = jnf(StructObj) returns a matrix J in Jordan Normal/Canonical
Form of a matrix structure object StructObj. This methods calls
jcf.

See also jcf.

MCS Toolbox, v0.7 7 GUPTRI FUNCTIONS | 123

7 Guptri functions

7.1 PCLUSTER

Compute and cluster generalized eigenvalues of a matrix pencil.

eigs = pcluster(G,H) computes and clusters the generalized eigenvalues of
the square matrix pencil G-sH. The avarage of the generalized eigenvalues
classified to belong to the same cluster is considered as a (numerical)
multiple eigenvalue. Eigs is a two-column matrix, where the first column is
the generalized eigenvalues of G-sH and the second column is the
corresponding cluster sizes. The number of rows in Eigs is consequently the
same as the number of distinct (possible multiple) eigenvalues of G-sH. By
default the cluster method returned by mcsevclmth is used. Optional
parameters to the default cluster method can be appended to the argument
list, see below for available parameters.

[Eig,S] = pcluster(G,H) instead only computes the cluster size of the
largest eigenvalue and returns the eigenvalue and cluster size in two
separate variables.

Eigs = pcluster(Method,G,H, ...) or
[Eig,S] = pcluster(Method,G,H, ...) also specifies the method used to
cluster the eigenvalues with optional extra parameters. For available
methods see below.

... = pcluster('norm',G,H [,Tol]) uses an "over-simple" method where the
eigenvalues that are within the norm tolerance Tol are classified to belong
to the same cluster. By default Tol =
sqrt(eps)*max(norm(G,'fro'),norm(H,'fro')).
For details see private/cenorm.

... = pcluster(Method,G,H [,DeltaMax [,Pmin]]) uses a hierarchical
clustering algorithm where the clustering is determined by a distance
function D that satisfy D <= DeltaMax. Pmin is minimum number of clusters
generated. Available distance functions D(X,Y) (specified with Method) are,
where X and Y are two different clusters with r and s eigenvalues,
respectively:

'min' - D(X,Y) = min(abs(X(i) - Y(j))), for all i,j
'max' - D(X,Y) = max(abs(X(i) - Y(j))), for all i,j
'avg' - D(X,Y) = 1/(r*s) * (sum^{r,s} abs(X(i) - Y(j)))
'mean' - D(X,Y) = abs(sum(X)/r - sum(Y)/s)
'var' - D(X,Y) = var(X U Y), (variance of X union Y)

Default values are DeltaMax =sqrt(eps)*max(norm(G,'fro'),norm(H,'fro')) and
Pmin = 1. If the matrix pencil is known to have k multiple eigenvalues,
appropriate parameters are DeltaMax = inf and Pmin = k.
For details see private/cehierarchy.

... = pcluster('gersh',G,H [,SizeE,SizeF [,Goal]]) or

... = pcluster('gersh',G,H [,SizeEF [,Goal]]) uses a method based on
Gershgorin circles to cluster the eigenvalues closest to Goal or the

124 | 7 GUPTRI FUNCTIONS User’s manual

largest eigenvalue (default). The function starts with isolating the
cluster closest to the point Goal in the complex plane. If the cluster
containing the largest eigenvalue is desired to be first then Goal
should be set to Inf or omitted. SizeE and SizeF should be estimates of
the 1-norm of the errors known to affect G and H, respectively. The
error estimates can also be specified as vector SizeEF = [SizeE SizeF].
If not specified or empty, SizeE = sqrt(eps)*norm(G,'fro') and SizeF =
sqrt(eps)*norm(H,'fro').
For details see private/pcegershgorin.

[Eigs,E,EvCluster] = pcluster(...) also returns all computed eigenvalues E
of G-sH and the clustering of the eigenvalues in EvCluster. The integer
value k in EvCluster(i) represents the cluster the eigenvalue E(i) belongs
to, where Ev(k) is the new eigenvalue for the cluster. The eigenvalues in E
are sorted in non-increasing order.

See also private/cenorm, private/cehierarchy, private/pcegershgorin,
mcluster, mcsevclmth.

7.2 PGGALLERY

Test matrix pencils for staircase computation and bounds.

[G,H] = pggallery(PencilName) returns a matrix pencil G-sH for testing
computation routines of the staircase form (canonical structure) and
bounds. The string PencilName specifies the matrix pencil (see below).

[S,T,Eg,Eh] = pggallery(PencilName,Pert) also adds a random
perturbation of size Pert to the pencil, where S = G + Eg and T = H +
Eh. If Pert is zero or empty, no perturbation is added.

[G,H,PStr] = pggallery(...) or
[S,T,Eg,Eh,PStr] = pggallery(...) returns the correct canonical form
for the matrix pencil G-sH as a pstruct object in PStr, where in the
descriptions below the block notation is used:

Rn - is an n-by-(n+1) right singular block,
Ln - is an (n+1)-by-n left singular block,
Jn(mu) - is an n-by-n Jordan block with eigenvalue mu, and
Nn - is an n-by-n Jordan block with an infinite eigenvalue.

A number before the block denotes the number of blocks of the same
size and type.

Available test matrix pencils are (specified with PencilName and with
optional parameters added as input arguments after Pert):

'boley1' - A 7x8 matrix pencil already in staircase form that
corresponds to state-space system which is controllable but close to
an uncontrollable system, for eps=1 at a distance 6e-4 [Boley90,
Example 2, p. 639] (see also [EdelmanMa00]). The default value for
the optional parameter eps is 1. The canonical form is R7 and for

MCS Toolbox, v0.7 7 GUPTRI FUNCTIONS | 125

eps=0, R6 + J1(a).

[0 1 0 ...] [1 -1 ... -1 7]
[0 1 0] [0 1 -1 .. -1 6]

G = [. . .] and H(eps) = [. . . : :]
[0 1 0] [1 -1 2]
[0 1] [eps 1]

'boley2' - A 3x4 matrix pencil from [Boley90, Example 3, p.639] with
ill-conditioned eigenvalues. The canonical form is R3.

'degreg' - A degenerated regular 8x8 matrix pencil constructed from
the Kronecker canonical form
J2(6) + 2J1(6) + J3(2) + J1(2).

'dk_c1', 'dk_c2', 'dk_c3' - Examples from [DemmelKagstrom88, p. 142].
The examples have successively more ill-conditioned eigenvalues. The
canonical form is R2 + J1(1) + J1(2) for all three cases.

'em' - Example from [EdelmanMa00, p. 1018]. The default value for the
optional parameter d is 1.5e-8. The canonical form is R1 + J2(0).
This pencil is sensitive even for for small perturbations (1e-14).

[0 0 1 0] [d 0 0 0]
G = [0 0 0 1] and H = [0 d 0 0]

[0 0 0 0] [0 0 1 0]

'lmi' - An example of an 11x9 matrix pencil with the canonical form
L0 + L8 + N1 originally comming from preprocessing of lmi:s
[Helmerson09].

'ones' - An example provided by [Mason04]:
G = ones(55,35) and H = pi*ones(55,35). The exact canoical form is
34R0 + 54L0 + J1(e), where e = (1/1925)/(pi/1925).

'rand' - A 5x7 random matrix pencil with the canonical form
5L1 + 15L2 (the generic pencil). With the two optional arguments m
and n the size of the matrix pencil can be specified. If only one
argument is provided the matrix pencil will be square and regular,
see also 'square_rand'.

'rand_large' - A 650x503 random matrix pencil with the canonical
form 85L3 + 62L4.

'rand_medium' - A 55x35 random matrix pencil with the canonical
form 5L1 + 15L2.

'rand_square' - A 5x5 square regular random matrix pencil. With the
optional n the size of the matrix pencil can be specified.

'reference' - A 14x12 matrix pencil with all types of canonical blocks

126 | 7 GUPTRI FUNCTIONS User’s manual

constructed from the Kronecker canonical form
R1 + R0 + L2 + 3L0 + 2J1(6) + J1(2+5i) + J1(0) + N2 + N1

'test1' - A 3x4 matrix pencil which is constructed from the exact
Kronecker canonical form
R0 + R1 + L0 + J1(1e-4i)

by an equivalence transformation with two perturbed orthogonal
matrices [Karlsson15]. The constructed matrices G and H are
ill-conditioned, O(cond(G)) = O(cond(H)) = 1e16. pguptri compute the
correct canonical structure if the order of the regular blocks are
'ifz', 'izf', or 'fiz' (the two matrices G and H are swaped in the
computations), but fails for the other orders.

'test2' - A larger variant of 'test2' where the size of the matrix
pencil is 33x39 [Karlsson15]. The correct canonical form is
2R0 + 2R2 + 2R5 + 2J1(0) + 5J1(0.05) + 4J2(0) + J4(0).

The constructed matrix G is ill-conditioned, O(cond(G)) = 1e16.
pguptri compute the correct canonical structure if the order of the
regular blocks are 'ifz', 'izf', or 'fiz' (the two matrices G and H
are swaped in the computations), but fails for the other orders.

References

[Boley90] D. Boley. Estimating the sensitivity of the algebraic
structure of pencils with simple eigenvalue estimates. siam J. Matrix
Anal. Appl., Vol 11, pp. 632-643, 1990.

[EdelmanMa00] A. Edelman and Y. Ma. Staircase failures explained by
orthogonal versal forms. siam J. Matrix Anal. Appl., Vol 21, pp.
1004-1025, 2000.

[DemmelKagstrom88] J. Demmel and B. Kagstrom. Accurate solutions of
ill-posed problems in control theory. siam J. Matrix Anal. Appl., Vol
9, pp. 126-145, 1988.

[Helmerson09] A. Helmersson, Dept Electrical Engineering, Linkoping
University, Sweden. Private communication, 2009.

[Karlsson15] L. Karlsson, Dept Computing Science, Umea University,
Sweden. Private communication, 2015.

[Mason04] J. Mason, Sandia National Labs, Albuquerque, nm. Private
communication, 2004.

See also mggallery, pguptri.

7.3 PGUPTRI

Compute the canonical structure information of a matrix pencil.

MCS Toolbox, v0.7 7 GUPTRI FUNCTIONS | 127

PStr = pguptri(G,H) returns a pstruct object PStr representing the
Kronecker canonical structure of G-sH, i.e., the sizes of existing
singular blocks and regular blocks with associated eigenvalues. The
Kronecker canonical structure information is computed using the Guptri
staircase algorithm.

PStr = pguptri(G,H,Tol,Gap) determines the structure with respect to
the deflation tolerance, Tol, and the required gap, Gap, in the
singular values of the orthogonal deflations. Tol and Gap are used to
make rank decisions by searching for adjacent singular values whose
ratio exceeds Gap and the smaller one is less than Tol. If Tol is a
vector [TolG TolH], different tolerances Tol are used for G and H. Tol
is the absolute uncertainty in the data and should be at least about
eps and nominally between 1e-8 and 1e-12. Gap should be at least 1 and
nominally 1000. If Tol and Gap are not provided, default tolerances are
used (see mcstolerance). By setting Tol or Gap to empty matrix the
default value is used for that tolerance.

pguptri(G,H,Tol,Gap,...) or
pguptri(G,H,...) can take the additional arguments in any order (if
specified, set Tol and/or Gap to empty matrix to use their default values):

'ZFI' | 'ZIF' | 'IFZ' | 'IZF' | 'FZI' | 'FIZ'
The string describes in which order the regular subpencils should
appear in the Guptri form. The letters F, Z, and I stand for
finite, zero, and infinite eigenvalues, respectively. The default
order is 'ZFI'.

'norm' | 'gersh' | 'min' | 'max' | 'avg' | 'mean' | 'var'
Specifies the method used to cluster the eigenvalues with default
tolerance. Optional tolerance parameter to the cluster method can
be specified in a subsequent argument CTol. For example, the following
call set CTol = eps for 'norm'
> pstr = pguptri(G,H,'norm',eps)

See pcluster for a full desciption of each method. By default, the
cluster method returned by mcsevclmth is used.

'absolute' | 'relative' | 'relative_strict'
If 'absolute', the tolerance Tol is used to determine the
nullspace of G and H.
If 'relative', relative tolerances are used for G and H:
TolG = norm(G,'fro')*Tol(1) and
TolH = norm(H,'fro')*Tol(2),

where Tol normally should be the machine precision but this will
in some cases be to optimistic.
If 'relative_strict', the value of Tol is ignored and (normally)
strict relative tolerances are used for G and H:
TolG = max(size(G))*eps(norm(G,'fro')) and
TolH = max(size(H))*eps(norm(H,'fro')).

Default is 'absolute'.
'zeros'|'nozeros'

If 'zeros', the singular values interpreted as zeros (with respect
to Tol and Gap) in the deflation process are set to zero.

128 | 7 GUPTRI FUNCTIONS User’s manual

Otherwise ('nozeros'), small singular values are kept and used in
the computations. The default is 'zeros'.

'forceimpose'
If 'forceimpose', also singular values larger than Tol*Gap will be
forced to zero in the separation steps. Default is that if a
"large" singular value is going to be set to zero the current
separation will stop and continue with the next. Instead a warning
is issued and the returned S and T (see below) are not in exact
Guptri staircase form.

'suppresswarnings'
Suppress all warnings. This option should be used with care!

pguptri can also return the following data:
[S,T] = pguptri(...)
[S,T,PStr] = pguptri(...)
[S,T,P,Q] = pguptri(...)
[S,T,P,Q,PStr] = pguptri(...)
[S,T,P,Q,dG,dH] = pguptri(...)
[S,T,P,Q,dG,dH,PStr] = pguptri(...)

where P and Q are unitary (orthonormal) and S and T are in generalized
upper triangular form (Guptri staircase form), such that P(S-sT)Q' =
(G+dG)-s(H+dH). The Frobenius norm of dG and dH is an upper bound on
the distance from G-sH to a matrix pencil with the computed Kronecker
structure as the exact one. Given the argument 'zeros' (default),
norm([dG,dH]) is of size norm([G,H])*Tol. Otherwise, given the argument
'nozeros', S-sT is an "exact" orthogonal equivalence transformation of
G-sH, and norm([dG,dH]) is of size norm([G,H])*eps, where dG and dH are
formed by P*S*Q'-G and P*T*Q'-H, respectively.

Algorithm:
Based on the algorithm described in
J. Demmel and B. Kagstrom. The generalized Schur decomposition of an
arbitrary pencil A-lambda B: Robust software with error bounds and
applications. Part i: Theory and algorithms. ACM Trans. Math.
Software. Vol. 19, No. 2, pp. 160-174, 1993.
J. Demmel and B. Kagstrom. The generalized Schur decomposition of an
arbitrary pencil A-lambda B: Robust software with error bounds and
applications. Part ii: Software and applications. ACM Trans. Math.
Software. Vol. 19, No. 2, pp. 175-201, 1993.

See also mguptri, pstruct, pcluster, mcstolerance, mcsevclmth.

MCS Toolbox, v0.7 8 TANGENT SPACES AND CODIMENSIONS | 129

8 Tangent spaces and codimensions

8.1 CMCODIM

Codimension of a matrix orbit under congruence.

cmcodim(H) computes the codimension of the tangent space of the
congruence orbit of a matrix H. Default tolerance parameter of rank
is used.

cmcodim(H,Tol) uses the specified tolerance Tol.

cmcodim(CMstr) determines the codimension of the orbit of the congruence
matrix structure object CMstr. The codimension is determined with
respect to the represented canonical structure not the tangent space.
For further information, see cmstruct/codim.

See also cmstruct/codim, mcodim.

8.2 CMTANSPACE

Tangent space of the congruence orbit of a matrix.

T = cmtanspace(A) returns the matrix representation

T = kron(A.',In) + kron(In, A)*P

of the tangent space to the congruence orbit(A) at A, where A is an
n-by-n matrix, I_n is the n-by-n identity matrix, and P is the
(n^2)-by-(n^2) permutation matrix that can "transpose" n-by-n matrices,
i.e., vec(X')=P*vec(X) for any n-by-n matrix X. The tangent space is
the range of the (n^2)-by-(n^2) matrix T.

The tangent space consists of the matrices of the form
T_A = X'*A + A*X,

where X is an n-by-n matrix. Equivalently, the tangent vectors T_A can
be represented as

vec(T_A) = (kron(A.',In)+kron(In, A)*P) vec(X).

See also cmcodim, mtanspace, scmtanspace.

8.3 MCODIM

Codimension of a matrix space.

mcodim(A) computes the codimension of the tangent space of the
similarity orbit of a square matrix A. Default tolerance parameter for
rank is used.

mcodim(A,Tol) uses the specified tolerance Tol.

130 | 8 TANGENT SPACES AND CODIMENSIONS User’s manual

mcodim(Mstr) determines the codimension of the orbit of a matrix
structure object Mstr. The codimension is determined with respect to
the represented canonical structure not the tangent space.

See also mtanspace, mstruct/codim, pcodim.

8.4 MTANSPACE

Tangent space of the orbit of a matrix.

T = mtanspace(A) returns the matrix representation

T = kron(A.',I) - kron(I_n,A)

of the tangent space to the similarity orbit(A) at A, where A is an
n-by-n matrix and I_n is the n-by-n identity matrix. The tangent space
is the range of the (n^2)-by-(n^2) matrix T.

The tangent space consists of the matrices of the form
T_A = X*A - A*X,

where X is an n-by-n matrix. Equivalently, the tangent vectors T_A can
be represented as

vec(T_A) = T * vec(X).

See also mcodim, ptanspace.

8.5 PCODIM

Codimension of a matrix pencil orbit.

pcodim(G,H) computes the codimension of the tangent space of the strict
equivalence orbit of a matrix pencil G-sH. Default tolerance parameter
of rank is used.

pcodim(G,H,Tol) uses the specified tolerance Tol.

pcodim(Pstr) determines the codimension of the orbit of the matrix
pencil structure object Pstr. The codimension is determined with
respect to the represented canonical structure not the tangent space.
For further information, see pstruct/codim.

See also ptanscpace, pstruct/codim, mcodim.

8.6 PTANSPACE

Tangent space of the orbit of a matrix pencil.

T = ptanspace(G,H) returns the matrix representation

MCS Toolbox, v0.7 8 TANGENT SPACES AND CODIMENSIONS | 131

| kron(G.',I_m) - kron(I_n,G) |
T = | |

| kron(H.',I_m) - kron(I_n,H) |

of the tangent space to the strict equivalence orbit(G-sH) at G-sH,
where G-sH is a m-by-n matrix pencil and I_x is the x-by-x identity
matrix. The tangent space is the range of the (2mn)-by-(m^2+n^2) matrix
T.

The tangent space consists of the matrix pencils of the form
T_G - sT_H = X(G-sH) - (G-sH)Y,

where X is an m-by-m matrix and Y is an n-by-n matrix. Equivalently,
the tangent vectors T_G - sT_H can be represented as

|vec(T_G)| |kron(G.',I_m)| |kron(I_n,G)|
| | = | | vec(X) - | | vec(Y).
|vec(T_H)| |kron(H.',I_m)| |kron(I_n,H)|

See also pcodim, mtanspace.

8.7 S2CODIM

Codimension of a matrix pair.

s2codim([Type],A,B) or
s2codim([Type],A,C) computes the codimension of the tangent space of
the feedback equivalence orbit of a system pencil [A B]-s[I 0] (or
[A;C]-s[I;0]). Default tolerance parameter of rank is used.

The optional argument Type is a string that for a controllability pair
(A,B) should be 'ab' and for an observability pair (A,C) should be
'ac'. If the argument is absent, the sizes of A and B (or C) will
determine the type. If B is square, 'ab' is assumed.

s2codim([Type],A,C,Tol) or
s2codim([Type],A,B,Tol) uses the specified tolerance Tol.

s2codim(SSstr) determines the codimension of the orbit of state-space
structure object SSstr. The codimension is determined with respect to
the represented canonical structure not the tangent space. For further
information, see ssstruct/codim.

See also s2tanspace, ssstruct/codim, pcodim.

8.8 S2TANSPACE

Tangent space of the orbit of a matrix pair.

s2tanspace([Type],A,B) returns the matrix representation

132 | 8 TANGENT SPACES AND CODIMENSIONS User’s manual

| kron(A.',I_n)-kron(I_n,A) kron(I_n,B) 0 |
T(A,B) = | |

| kron(B.',I_n) 0 kron(I_m,B) |

of the tangent space to the feedback equivalence orbit([A B]-s[I 0]) at
(A,B).
s2tanspace([Type],A,C) returns the matrix representation

| kron(A.',I_n)-kron(I_n,A) kron(C.',I_n) 0 |
T(A,C) = | |

| -kron(I_n,C) 0 kron(C.',I_p) |

of the tangent space to the feedback equivalence orbit([A;C]-s[I;0]) at
(A,C).

The optional parameter, Type, is a string argument that for a
controllability pair (A,B) should be 'ab' and for an observability
pair (A,C) should be 'ac'. If the argument is absent, the sizes of A
and B (or C) will determine the type. If B is square, 'ab' is assumed.

The tangent space for (A,B) and (A,C) consist of the matrices of the
forms

|T_A T_B| = X |A B| + |A B| |-X 0; V W|
and

| T_A | |X Y| | A | | A |
| | = | | | | - | | X,
| T_C | |0 Z| | C | | C |

respectively, where X, Y, Z, V, and W are matrices of conforming sizes.
Equivalently, the tangent vectors T_A and T_B at (A,B) can be
represented as

|vec(T_A)| |kron(A.',I_n)-kron(I_n,A)|
| | = | | vec(X) +
|vec(T_B)| | kron(B.',I_n) |

|kron(I_n,B)| | 0 |
| | vec(V) + | | vec(W),
| 0 | |kron(I_m,B)|

and the tangent vectors T_A and T_C at (A,C) as

|vec(T_A)| |kron(A.',I_n)-kron(I_n,A)|
| | = | | vec(X) +
|vec(T_C)| | -kron(I_n,C) |

|kron(C.',I_n)| | 0 |
| | vec(Y) + | | vec(Z).
| 0 | |kron(C.',I_p)|

See also s2codim, ssstruct/codim.

MCS Toolbox, v0.7 8 TANGENT SPACES AND CODIMENSIONS | 133

8.9 SCMCODIM

Codimension of a matrix orbit under *congruence.

scmcodim(H) computes the codimension of the tangent space of the
*congruence orbit of a matrix H over the field of real numbers. Default
tolerance parameter of rank is used.

scmcodim(H,Tol) uses the specified tolerance Tol.

scmcodim(SCMstr) determines the codimension of the orbit of the
*congruence matrix structure object SCMstr. The codimension is
determined with respect to the represented canonical structure not the
tangent space. For further information, see scmstruct/codim.

See also scmstruct/codim, mcodim.

8.10 SCMTANSPACE

Tangent space of the *congruence orbit of a matrix.

T = scmtanspace(A) returns the matrix representation

|kron(re(A).',In)+kron(In,re(A))*P -kron(im(A).',In)+kron(In,im(A))*P|
T = | |

|kron(im(A).',In)+kron(In,im(A))*P kron(re(A).',In)-kron(In,re(A))*P|

of the tangent space to the *congruence orbit(A) at A over the field of
real numbers, where A is an n-by-n matrix, re(A) and im(A) are the real and
imaginary parts of A, I_n is the n-by-n identity matrix, and P is the
(n^2)-by-(n^2) permutation matrix that can "transpose" n-by-n matrices,
i.e., vec(X')=P*vec(X) for any n-by-n matrix X. The tangent space is
the range of the (2*n^2)-by-(2*n^2) matrix T.

The tangent space consists of the matrix of the form
T_A = X.'*A + A*X,

where X is an n-by-n matrix. Equivalently, the tangent vectors
T_A can be represented as

|vec(re(T_A))| |kron(re(A).',In)+kron(In, re(A))*P|
| | = | | vec(re(X)) +
|vec(im(T_A))| |kron(im(A).',In)+kron(In, im(A))*P|

|-kron(im(A).',In)+kron(In, im(A))*P|
| | vec(im(X))
| kron(re(A).',In)-kron(In, re(A))*P|

See also scmcodim, cmtanspace.

134 | 8 TANGENT SPACES AND CODIMENSIONS User’s manual

8.11 SPCODIM

Codimension of a symmetric matrix pencil orbit.

spcodim(G,H) computes the codimension of the tangent space to the
congruence orbit of a symmetric matrix pencil G-sH. Default tolerance
parameter of rank is used.

spcodim(G,H,Tol) uses the specified tolerance Tol.

spcodim(SPstr) determines the codimension of the congruence orbit of the
symmetric matrix pencil structure object SPstr. The codimension is
determined with respect to the represented canonical structure not the
tangent space. For further information, see spstruct/codim.

See also pstruct/codim, sspcodim.

8.12 SPTANSPACE

Tangent space to the congruence orbit of a symmetric matrix pencil.

T = sptanspace(G,H) returns the matrix representation

| kron(G.',In) + kron(In,G)*P |
T = | |

| kron(H.',In) + kron(In,H)*P |

of the tangent space to the congruence orbit(G-sH) at G-sH, where G-sH
is a n-by-n symmetric matrix pencil and I_n is the n-by-n identity
matrix, and P is the (n^2)-by-(n^2) permutation matrix that can
"transpose" n-by-n matrices, i.e., vec(X')=P*vec(X) for any n-by-n
matrix X. The tangent space is the range of the (2n^2)-by-(n^2) matrix
T.

The tangent space consists of the matrix pencils of the form
T_G - sT_H = X'(G-sH) + (G-sH)X,

where X is an n-by-n matrix. Equivalently, the tangent vectors
T_G - sT_H can be represented as

|vec(T_G)| |kron(G.',I_n)| |kron(I_n,G)|
| | = | | vec(X) - | | P*vec(X)
|vec(T_H)| |kron(H.',I_n)| |kron(I_n,H)|

See also spcodim, ptanspace, ssptanspace.

8.13 SSPCODIM

Codimension of a skew-symmetric matrix pencil orbit.

sspcodim(G,H) computes the codimension of the tangent space of the
congruence orbit of a skew-symmetric matrix pencil G-sH. Default

MCS Toolbox, v0.7 8 TANGENT SPACES AND CODIMENSIONS | 135

tolerance parameter of rank is used.

sspcodim(G,H,Tol) uses the specified tolerance Tol.

sspcodim(SSPstr) determines the codimension of the congruence orbit of
the skew-symmetric matrix pencil structure object SSPstr. The
codimension is determined with respect to the represented canonical
structure not the tangent space.

See also pstruct/codim, mcodim.

8.14 SSPTANSPACE

Tangent space to the congruence orbit of a skew-symmetric matrix pencil.

T = ssptanspace(G,H) returns the matrix representation

| kron(G.',In) + kron(In,G)*P |
T = | |

| kron(H.',In) + kron(In,H)*P |

of the tangent space to the congruence orbit(G-sH) at G-sH, where G-sH
is a n-by-n skew-symmetric matrix pencil and I_n is the n-by-n identity
matrix, and P is the (n^2)-by-(n^2) permutation matrix that can
"transpose" n-by-n matrices, i.e., vec(X')=P*vec(X) for any n-by-n
matrix X. The tangent space is the range of the (2n^2)-by-(n^2) matrix
T.

The tangent space consists of the matrix pencils of the form
T_G - sT_H = X'(G-sH) + (G-sH)X,

where X is an n-by-n matrix. Equivalently, the tangent vectors
T_G - sT_H can be represented as

|vec(T_G)| |kron(G.',I_n)| |kron(I_n,G)|
| | = | | vec(X) - | | P*vec(X)
|vec(T_H)| |kron(H.',I_n)| |kron(I_n,H)|

See also sspcodim, ptanspace, sptanspace.

136 | 9 STARTIGRAPH PUBLIC INTERFACE FUNCTIONS User’s manual

9 StartiGraph public interface functions

These functions are part of the StratiGraph Matlab plugin.

9.1 SGCLOSE

Close a StratiGraph window.

sgclose(Label) close the StratiGraph window with label Label.
The label can either be a positive integer or a string.

sgclose('all') close all opened StratiGraph windows. Even those
who are not opened from Matlab.

See also sgopen.

9.2 SGGET

Get the active structure in StratiGraph.

StructObj = sgget returns a Matlab structure object of the active
structure in StratiGraph. If no structure or an edge is active,
StructObj is empty.

StructObj = sgget(Label) specifies the label of the StratiGraph window to
get the data from.

See also sgset, sgopen.

9.3 SGGETCONSTRAINTS

Return a list of available setup constraints.

sggetconstraints list all setups and available constraints in
StratiGraph to the command window.

Constr = sggetconstraints(Struct) returns for a canonical structure
object the list Constr with all available constraints for the
corresponding setup in StratiGraph, where Struct can be a canonical
structure object or the name of the canonical structure class as a
string. The returned list is a cell-array of strings.

See also sgset.

9.4 SGLABELS

Return the labels of the opened StratiGraph windows.

MCS Toolbox, v0.7 9 STARTIGRAPH PUBLIC INTERFACE FUNCTIONS | 137

Labels = sglabels returns a cell array with the labels of the opened
StratiGraph windows.

See also sgopen, sgclose.

9.5 SGOPEN

Open a StratiGraph window.

sgopen opens a new StratiGraph window.
Label = sgopen also returns the label of the StratiGraph window.

sgopen(Label) opens a new StratiGraph window with the label Label that
can be used in communication. The label must either be a positive
integer or a string. If the window Label already exists then it is
activated and send to front.

sgopen(Label,Args) start StratiGraph with the command line arguments
Args. Can only be used when no StratiGraph window is open.
For example:

sgopen('','-v') - returns the StratiGraph version.
sgopen('','-h') - display the help text.

See also sgset, sgget, sgclose.

9.6 SGSET

Send a canonical structure to StratiGraph.

sgset(StructObj,StrataType) set the start node in StratiGraph to
the canonical structure represented by the object StructObj. Any
existing graph in StratiGraph is deleted. The parameter
StrataType specifies the strata and must be either 'orbit' or
'bundle'. If StrataType is omitted, 'orbit' is assumed. By
default, if there exists a graph in StraiGraph the user will be
asked if it should be overwritten.

sgset(StructObj,StrataType,Constraint) also specify the setup
constraint. By default no constraint is used for the setup. To
list all available constraints for a canonical structure object
call the method getsgconstraints on the object or the function
sggetconstraints. By setting Constraint to 'default' or empty
string, no constraint is used.

sgset('matrix', A, StrataType) initializes StratiGraph with the
structure of the matrix A.

sgset('abpair', A, B, StrataType) initializes StratiGraph with
the structure of the controllability pair (A,B).

138 | 9 STARTIGRAPH PUBLIC INTERFACE FUNCTIONS User’s manual

sgset('acpair', A, C, StrataType) initializes StratiGraph with
the structure of the observability pair (A,C).

sgset('pencil', G, H, StrataType) initializes StratiGraph with
the structure of the matrix pencil G-sH.

sgset(...,ForceOverwrite) let the user supress the prompt if any
existing graph in StratiGraph should be overwitten by setting the
boolean ForceOverwrite to true.

sgset(...,ForceOverwrite,Label) specifies the label of the
StratiGraph window to be initialize. If no label is provided the
initialization is send to the first window.

See also sgget, sgopen, sggetconstraints, sgsettolerance.

MCS Toolbox, v0.7 10 SOFTWARE LICENSE | 139

10 Software License

Matrix Canonical Structure (MCS) Toolbox for Matlab
Copyright (c) 2013-2019, The MCS Team*
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer listed in this license in the documentation and/or other
materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permis-
sion.

The copyright holders provide no reassurances that the source code provided does not infringe
any patent, copyright, or any other intellectual property rights of third parties. The copyright
holders disclaim any liability to any recipient for claims brought against recipient by any third
party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDINGNEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGE.

*) The MCS Team@Umeå University consists of

Programming: Stefan Johansson, Pedher Johansson, and Andrii Dmytryshyn.

Scientific contribution: Bo Kågström, Erik Elmroth, Pedher Johansson, Stefan Johansson, and
Andrii Dmytryshyn.

140 | 10 SOFTWARE LICENSE User’s manual

	Introduction
	Installation
	StratiGraph Connection
	Compatibility
	Contact
	Developers and Scientific Contributors
	Bibliography

	Toolbox summary
	Auxiliary functions
	MCSFORMAT
	MCSGETVALIDBLOCKS
	MCSTOLERANCE
	MCSEVCLMTH
	SEGRE2WEYR
	SIZES2SEGRE
	SIZES2WEYR
	WEYR2SEGRE
	WEYR2SIZES

	Canonical Structure Objects
	MCSSTRUCT
	CMSTRUCT
	MPSTRUCT
	MSTRUCT
	PSTRUCT
	SCMSTRUCT
	SPSTRUCT
	SSPSTRUCT
	SSSTRUCT

	Canonical Block Objects
	MCSBLOCK
	FJBLOCK
	GBLOCK
	HBLOCK
	IJBLOCK
	KBLOCK
	LSBLOCK
	MBLOCK
	PBLOCK
	RSBLOCK
	SBLOCK
	SGBLOCK
	SHBLOCK
	SKBLOCK
	SMBLOCK
	SWBLOCK
	WBLOCK
	ZJBLOCK

	Canonical Forms
	BCF
	KCF
	CCF
	JCF
	JNF

	Guptri functions
	PCLUSTER
	PGGALLERY
	PGUPTRI

	Tangent spaces and codimensions
	CMCODIM
	CMTANSPACE
	MCODIM
	MTANSPACE
	PCODIM
	PTANSPACE
	S2CODIM
	S2TANSPACE
	SCMCODIM
	SCMTANSPACE
	SPCODIM
	SPTANSPACE
	SSPCODIM
	SSPTANSPACE

	StartiGraph public interface functions
	SGCLOSE
	SGGET
	SGGETCONSTRAINTS
	SGLABELS
	SGOPEN
	SGSET

	Software License

